The Caradoc faunal associations of the area between Bala and Dinas Mawddwy, north Wales

M. G. Lockley
Department of Geology, Lilybank Gardens, University of Glasgow G12 8QQ, Scotland

Contents

Synopsis .. 166
Introduction ... 166
Stratigraphy .. 167
Aims, sampling procedures and data analysis 169
Data synthesis and presentation 172
The faunal succession .. 173
Faunal associations ... 188
Diversity patterns ... 197
Taxonomic descriptions 202
Phylum Brachiopoda Dumeril 202
Class Inarticulata Huxley 202
Superfamily Lingulacea Menke 202
? Lingulella sp. ... 202
Lingulella cf. ovata (M'Coy) 203
Palaeoglossa cf. attenuata (Sowerby) 203
? Pseudolingula sp. .. 203
Paterula sp. ... 203
Paracraniops cf. macellus Williams 203
Paracraniops glaber sp. nov. 204
Paracraniops cf. glaber Lockley 205
Superfamily Craniacea Menke 205
Orthisocrinia sp. .. 205
Class Articulata Huxley .. 205
Superfamily Orthacea Woodward 206
Nicolella cf. actoniae obesa Williams 206
Rhactorthis crassa Williams 209
Superfamily Enteletacea Waagen 209
Howellites cf. ultimus Bancroft 209
Howellites cf. antiquior (M'Coy) 209
Onniella ostentata Williams 209
Bancroftina sp. ... 209
Saloeia sp. ... 210
Superfamily Tripleciacea Schuchert 210
Triplesia maccoyana Davidson 210
Superfamily Plectambonitacea Jones 210
Palaeostrophomena canalis sp. nov. 210
Anisopleurella cf. multiseptata Williams 211
Sericoidea abdita Williams, emend. 211
Sericoidea abdita complicata subsp. nov. 212
Bimuria dyfensis sp. nov. 215
Superfamily Porambonitacea Davidson 216
Parastrophinella brenchleyi sp. nov. 216
Superfamily Atrypacea Gill 218
Protozyga musculosa sp. nov. 218
Superfamily Dayiacea Waagen 219
Cyclospira aff. bisulcata (Emmons) 219
Superfamily unknown ... 220
? Spiriferide, gen. indet. 220

Phylum Arthropoda
 Class Trilobita Walch
 Family Phillipsinellidae Whittington
 Phillipsinella sp.
 Family Raphiophoridae Angelin
 Lonchodomas sp.
 Family Cheiruridae Salter
 Sphaerocoryphe sp.
 Family Proetidae Salter
 Cyphoproetus sp.
 Phylum Mollusca
 Class Bivalvia Linne
 Family Praenuculidae McAlester
 ? Cardiolaria sp.
 Family Malletiidae Adams & Adams
 Nuculites sp.
 Family Modiomorphidae Miller
 Modiolopsis sp.
 Family Cyrtodontidae Ulrich
 Cyrtodonta sp.
 Family Grammysiidae Miller
 Cuneamya sp.
 Class Gastropoda Cuvier
 Class Monoplacophora Wenz in Knight
 Family Archinacellidae Knight
 ? Archinacella sp.
 Class Cephalopoda Cuvier
 Phylum Echinodermata
 Class Crinoidea Miller
 Family Archaeocrinidae Moore & Lauden
 Balacrinus basalis (M'Coy)
 Class Stelleroida Lamarck
 Stenaster obtusus (Forbes)

Faunal communities and associations
Conclusions
Acknowledgements
References
Index

Synopsis

A systematic scheme of sampling in key sections is used to provide a quantitative outline of the distribution of the total fauna in the greater part of the structurally less-disturbed, fossiliferous portion of the Lower Bala Group (and some equivalent deposits) south of Bala Lake. Sampling, data collecting and analysis techniques are discussed and derived quantitative parameters are used to describe six interrelated, brachiopod-dominated associations.

Representatives of five brachiopod, four trilobite and six molluscan genera are recorded in the group for the first time. Four new brachiopod species and a subspecies are described. These are Paracraniops glaber sp. nov., Palaeostrophomena canalis sp. nov., Bimuria dyfiensis sp. nov., Protozyga musculosa sp. nov. and Sericoidea abdita complicata subs. nov.; Parastrophinella brenchleyi sp. nov. is also described from contemporary deposits in the NE Berwyns.

The composition of faunal associations from the Lower Bala Group is compared with the structure and characteristics of named contemporary associations in adjacent areas.

Introduction

The researches presented here are linked to a reappraisal of the geology of the Llanuwchllyn to Llanymawddwy area presented elsewhere (Lockley 1980). The present paper is principally
concerned with the quantitative description of faunal assemblages and associations found in the fossiliferous upper part of the lower to middle Caradoc succession between Bala and Dinas Mawddwy. To this end a series of suitable sections were chosen for detailed examination, at more or less regular intervals along a 20 km portion of the strike belt shown in Fig. 1 (inset). Laterally spaced sample sites provide a framework in which to examine the relationships between faunal distribution patterns and vertical and lateral facies changes.

At each of the twelve localities shown in Fig. 1 a series of from 3 to 84 samples were collected at regular, measured vertical intervals. Horizons from which samples were derived are informally referred to – in conjunction with sample numbers – as ‘beds’; e.g. ‘bed H1’ (Fig. 4) refers to the horizon from which the material of sample H1 was derived.

Where exposure permitted, including key localities such as type sections, beds were extensively sampled; at remoter, less well-exposed sites fewer samples were recovered. In all, 250 collections, totalling 1.5 metric tons of rock, were made from the twelve named sections and subjected to thorough analysis employing the methods described below. All identifiable material was assigned to its respective taxon and counted; in all some 25,000 individual specimens were examined, in addition to numerous fragmentary remains. The resultant tabulated data are presented here as the basis from which further extrapolation and inference is derived. A limited quantity of biometric data is presented in conjunction with the taxonomic descriptions; additional information is given in my unpublished thesis (Lockley 1977). Regional cleavage caused the deformation of a large proportion of the material, prevented some accurate measurement and in some cases even identification.

In the course of mapping the Llanuwchllyn to Llanymawddwy area (Lockley 1980) a few important specimens were recovered from various localities other than those shown in Fig. 1; these, together with new material from the main sections, are described in the taxonomic part of this paper. Sample numbers not prefixed with a consonant (or consonants) correspond to map locality numbers on the author’s field maps (1:10,000) and generally refer to isolated outcrops or poorly exposed parts of minor sections; these numbers fall between 1 and 1162, and in certain cases have a suffix (e.g. A or B).

Full taxonomic descriptions are confined to the new Brachiopoda from this region and to a single new form from the Berwyns. Other figured material, including representatives of the Trilobita and Mollusca, is distinguished either by being previously unknown or undescribed in the Caradoc succession of this area or in having a particular stratigraphical significance (e.g. a considerably extended stratigraphical range). Numbers BB92200–BB92264 are used for the Brachiopoda, it. 14294–it. 14309 for the Trilobita, pl. 4440–pl. 4451 for the Bivalvia and pg 5022, c 81324, e 53698 and e 67750 for four other miscellaneous specimens; all other material is housed in the National Museum of Wales under accession number NMW 79.5G.

Conclusions are confined to correlative comparisons between the faunal assemblages and associations described here and the known contemporary faunas and named communities elsewhere. Brief comments on the definition of contemporary faunal associations (and communities) are also included where appropriate.

Stratigraphy

The stratigraphy of the Lower Bala Group was outlined by Bassett et al. (1966), who recognized four formations within the group in the Bala area (Fig. 1). Recognition, and indeed definition, of these formations is considerably facilitated by the occurrence of distinctive ash members within the succession. In contrast, however, the monotony of the entirely argillaceous Hengae Group described by Pugh (1923, 1928) in the Corris and Dinas Mawddwy areas is broken only by the black graptolitic shales of the Nod Glas Formation which represent the uppermost 20 m of the group.

Although Pugh (1929) attempted detailed correlations between the Bala and Dinas successions in the intervening Llanuwchllyn to Llanymawddwy area, his efforts have recently been shown to be at best imprecise and at worst quite inaccurate (Lockley 1977, 1980). Stratigraphical revisions of the succession in the Llanuwchllyn to Llanymawddwy area have not only been
Fig. 1 Scale representation of sampled sections (solid vertical bars I-XII) in the fossiliferous upper part of the Lower Bala and Hengae Groups between Bala and Dinas Mawddwy. I, Gelli-grin type section. II, Maes-Meillion section. III, Craig y Gath. IV, Lledwyn Bach. V, Ty nant. VI, Beudy Isaf. VII, Nant Tan y Bwlch. VIII, Afon Twrch. IX, Craig Ty nant section at Rhiw March. X, Pistyll Gwyn. XI, Y Ceunant. XII, Aber Cowarch. Insets (left, centre and right) respectively show regional setting, local stratigraphy and local geographical and geological setting.

effected by the discovery of outcrops representing distal extensions of the Frondderw Ash but have also been considerably facilitated by detailed examination of the faunal succession in sections throughout the area. The stratigraphical revisions (Lockley 1980) are summarized in Fig. 1 (inset).

The Llaethnant Formation is proposed as a name for a thick group of alternating mudstones and siltstones which, in addition to representing a different facies from the stratigraphically thinner Glyn Gower Formation, is not necessarily the chronostratigraphical equivalent of that unit.

The base of the Allt Ddu Formation, defined, following Bassett et al. (1966) as the base of the Frondderw Ash member, is accurately located as far south as Rhiw March in the Dyfi Valley. Similarly the base of the Gelli-grin Formation is accurately located as far south as this locality. The greater part of the Nod Glas Formation (between Aber Cowarch and Rhiw March) is shown to be equivalent to the upper part of the Gelli-grin Formation and to include the distal portions of the Cymerig Limestone member which becomes discontinuous towards the south.
Distinctive lateral changes in the Nod Glas facies in the area in question have resulted in the subdivision of the formation into two members which both represent facies of a diachronous nature. The Dyfi Mudstone is dominated by a distinctive *Sericoida*-dominated fauna and the Corris Shale is characterized by being generally unfossiliferous except for local graptolitic assemblages.

Aims, sampling procedures and data analysis

The primary aim of this study has been to name and describe quantitatively the Caradoc faunal associations and assemblages found between Bala and Dinas Mawddwy, and to compare these with contemporary associations outlined by Williams (1973) and described by Pickerill & Brenchley (1979). Thorough sampling provides a census of the fossil faunas, whether representative of various biocoenoses or thanatocoenoses, which furnishes data from which recurrent combinations of taxa may be noted. Where similar combinations of taxa show chronological (stratigraphical) and geographical persistence in like facies (which lack current-produced sedimentary structures) they are referred to as ‘associations’ and considered to resemble disturbed neighbourhood assemblages (*sensu* Scott 1974) or *in situ* communities. Such ‘associations’ predominate in the area considered here. Where clearly transported shelly deposits are noted they are categorized as ‘assemblages’.

Collecting techniques

Bulk samples of rock (mean weight 6 kg) were collected at vertical intervals varying from 0·5 m to > 3 m, depending on the extent of the section and the faunal content. It was found to become increasingly impracticable to collect large, closely-spaced samples as the succession got progressively less fossiliferous, as in some parts at lower horizons of the Caradoc of this area, so discretion in the choice of sample interval was exercised. However, in general it was necessary to collect a larger sample in poorly fossiliferous rocks to recover a representative number of specimens. In the six most thoroughly sampled sections (i.e. numbers I, II, III, VII, VIII and IX of Fig. 1) a mean sample interval of 2·75 m was employed for a total of over 500 m of section. Locally, as in the perfectly exposed fossiliferous upper 135 m of the Rhiw March section (IX), a smaller mean interval was employed, in this case 1·75 m.

To eliminate preferential collecting biases all samples were ‘broken up’ on a rock crushing machine in such a way as to ensure that all the fossils or fossil fragments were retained for identification purposes. All rock fragments were reduced to a size of 1–2 cm³ before being discarded if unfossiliferous. With the crushing machine (a converted fly press) it was easy to reduce fossiliferous rocks to a series of chips only fractionally larger than the individual fossils themselves which, in this case, generally approximated to the above chip size. All extracted identifiable specimens were then examined under a binocular microscope and counted, totals for each taxon being considered to represent random samples of residual fossil species populations.

Faunal densities

Essentially only two types of faunal density may be calculated, density per unit volume of rock or density per unit area of bedding plane. Neither method is entirely adequate for the analysis of more than a limited variety of fossiliferous lithologies. Volumetric densities are more suited for the expression of faunal densities in homogeneous (or isotropic), poorly-bedded strata, whereas areal densities better describe the density of fossils on bedding planes in strata where the rock fabric is essentially anisotropic. Both methods are size dependent; i.e. the mean size of the fossils controls the mean number of specimens per unit area. The calculation of areal and volumetric densities produces more accurate results when applied to relatively low density assemblages and associations; it becomes more difficult to derive accurate measurements from high-density deposits such as shell beds. The practical problems of accurate counting increase with the density of specimens in the rock.
Not only are contemporary sections of varying lithology likely to require different methods of density measurement, but within the same section it may be necessary to apply alternative methods of density evaluation at successive horizons. In the present study it was primarily volumetric densities which were calculated, although a few areal density measurements were obtained from well-defined bedding planes (Fig. 2). The volumetric densities calculated for the two sections shown in Fig. 2 are a useful guide to the faunal content (i.e. density of fossils) in the sequence at successive horizons. For example, the 'faunal depletion' zone described by Bassett et al. (1966: 236) is graphically illustrated and shows a marked contrast to the fossiliferous horizons of the overlying Gelli-grin Formation, which include the dense accumulation of small Sericoidea valves indicated.

The use of volumetric density measurements in this study was preferred not only because of the disposition of fossils in the rock (i.e. generally scattered throughout rather than concentrated on easily sampled bedding planes) but also because of the strong regional cleavage inclined at a high angle to bedding, which almost invariably has the effect of breaking up bedding planes to the extent that a complete sample of more than 100 cm² is hard to obtain; the mean area of the four bedding surface samples shown in Fig. 2 is only 25 cm². The single most significant effect of cleavage on sampling procedure in the area under study is that rock splits so as to produce a sample representing a vertical range of strata extending at least 15 cm above and below any given horizon. In effect the vertical range of a sample approximates to 0.3 m.

Volumetric and areal density measurements may be compared and shown to have consistent relationships. Theoretical considerations and empirical observations support the validity of relating the two methods of evaluation. It is easily shown that 1 kg of rock (400 cm³ at a density
of 2.5 g/cm3), if broken into cubic chips between 2 cm3 and 1 cm3, will expose a surface area of between 600 cm2 and 1200 cm2 of which one third of the area (200–400 cm2) will represent surface area in the horizontal (bedding) plane. Empirical observations by the author and Dr J. M. Hurst (personal communication 1977) have consistently shown that, when measuring the surface area of exposed bedding plane during the ‘breaking up’ of weighed samples, about 400 cm2 of fresh surface is exposed for each kilogram of processed rock. When processing homogeneous, poorly-bedded lithologies it is generally found that the rock can be reduced to a smaller chip size thereby exposing up to double the surface area. For example, Hurst & Hewitt (1977: 154) equated 2500 cm2 with a 3.5 kg sample (i.e. > 700 cm2 per kg).

Although faunal density is a useful parameter which aids in the description of fossiliferous successions, values should be used with caution; for comparative purposes, only like or similar facies should be compared. It should also be noted that fossil remains at any given horizon not only represent the remains of the ‘standing crop’ or the living (biological) populations which inhabited that surface but also represent dead assemblages representing contemporary and earlier generations. However, since palaeoecologists can rarely distinguish between these categories effectively, density estimates refer simply to fossils in the rock and are not in any way precisely indicative of original population structures.

Identification and counting

All the fossils extracted from the rock by the ‘crushing’ process were identified and counted. The counting procedures outlined below are aimed at assessing the number of individual organisms in any sample. Different counting methods are required for the various fossil groups under consideration and produce varying degrees of accuracy. However, consistent methods are used for counting all representatives of any given group.

The Brachiopoda represent the most diverse and abundantly represented phylum encountered in this study. The number of individuals (N) per sample was estimated using the formula $N = A + \frac{1}{2}I + P$ (if $P > B$) or $A + \frac{1}{2}I + B$ (if $B > P$), where A, P, B and I represent the number of articulated pairs of valves, pedicle valves, brachial valves and indeterminate valves, respectively. The same method (with right and left being substituted for pedicle and brachial) was used to count the Bivalvia. This method has been used by other workers including Hurst (1975) and Watkins (1979). The numbers of individual gastropods, cephalopods, macheridians, tentaculitids and graptolites were counted singly.

Estimates of individual numbers in the five above-mentioned groups are far more accurate than for the other groups considered here. In assessing numbers of bryozoan it was assumed that a single complete colony could be regarded as an individual ‘unit’. Since fragmentary remains do not generally outnumber complete or relatively complete specimens they too were regarded as each representative of a complete individual colony. Bryozoans were therefore also counted on a one to one basis; a significant overestimate of the abundance of colonies is considered no more probable than the likelihood of biased quantification in assessment of the numbers of other groups also to some extent represented by fragmentary remains.

The number of individuals represented by a collection of arthropod fossils is problematical since individuals may shed their exoskeleton many times during ontogeny (ecdysis). Ostracods almost invariably moult seven times before their ontogeny culminates in the eighth, maturation moult. Similar ontogenetic patterns are recorded in modern and fossil ostracods (Anderson 1964). In contrast, however, existing evidence on the ontogeny of various trilobite groups suggests considerable variation in the number of moults produced, for example between representatives of the Agnostina (Hunt 1967) and the Olenellinae (Raw 1927) or the Olenidae (Palmer 1957, Cisne 1973). Estimates of the number of instars produced during ontogeny range from 9 in the case of the agnostids to about 29 for the olenellids and olenids, with the majority considered representative of the adult (holaspid) stage. Variations in trilobite and ostracod moult patterns are reviewed in greater detail elsewhere (Lockley 1977).

A consideration of arthropod ecdysis favours the conclusion that a given number of trilobite or ostracod exoskeletons in any fossil assemblage is likely to represent fewer individual organisms.
For example, an ostracod could theoretically produce up to eight pairs of valves (albeit of differing sizes) whilst a trilobite could produce many exoskeletal moults, with up to 50% representing adult instars showing little or no significant size differences. With our present incomplete understanding of trilobite ecdysis, in addition to known variation amongst groups and complicating factors such as sexual dimorphism and fragmentation associated with ecdysis, any correction factor used to avoid overestimation of numbers is highly arbitrary. Nevertheless, various authors have estimated numbers of trilobites either without using any correction factor (e.g. Bayer 1967, Hurst 1975) or by dividing a total number of exoskeleton remains by a correction factor such as 10 (e.g. Pickerill 1974). This later example echoes the suggestion of Harrington et al. (1959 : 111) that less than 10% of trilobite remains are likely to belong to dead individuals. Either method tends to produce estimates approaching theoretical extreme values.

In this study correction factors of 8 and 4 were used for the Ostracoda and Trilobita respectively. Since all ostracod valves were counted without making a distinction between left and right, it was assumed that, ignoring the first instar (the egg), an individual could be represented by between 0 and 16 valves. A correction factor of 8 was therefore chosen as a mean estimate between theoretical minima and maxima. Similarly, it was assumed that if none of the trilobites encountered in this study were represented by more than eight holaspid instars then a mean correction factor would approximate to four. Corrected counts were therefore derived by estimating one individual for every four pygidia or cephala depending on which fragment was most numerous. Throughout the study fragments of pygidia or cephalas for all species were generally found to be complete and representative of the holaspid stage. It could therefore be argued that the absence of a complete series of instars would call for a relatively low correction factor (i.e. less than 10) to avoid excessive underestimation. However, since the correction factors are acknowledged as arbitrary it is emphasized that the use of a correction constant does not obscure the original data.

In this study most of the crinoid remains recovered were fragmentary; it was therefore impossible to assess a representative number of individuals. Counts made of ossicles and stem fragments are presented in the data tables where the presence of crinoid material is otherwise indicated simply by the addition of one to the total of individuals per sample.

Data synthesis and presentation

Having assessed the number of individuals in each taxon, totals for each sample were calculated; these totals accompany counts for each taxon and are presented in a series of tables which each represent one of the sampled sections.

The taxonomic level of classification employed in these tables, although variable, is essentially specific. In all but a few cases the generic names of Brachiopoda and Trilobita refer unequivocally to members of single-species populations as defined by Williams (1963) and Whittington (1962-68). Categories which do not necessarily represent only a single species population are as follows: Inarticulata, dalmanellid indet., Stroph. indet. and Trilobita indet. The remaining fauna is classified into the following series of generic or suprageneric groups: Mollusca or Bivalvia, Gastropoda (or Sinuites and Cyclonema), Cephalopoda, Macheridia, Monoplacophora, Tentaculites, Ostracoda (or Tallinella and Primitia), Bryozoa indet. (or ramose bryozoa, ‘Prasopora’ and cateniform bryozoa) and Crinoidea. These classifications generally represent one morphotype or morphospecies, although in certain cases categories such as Mollusca are used either to group minimal numbers of representatives of different molluscan taxa or to indicate uncertainty about the taxonomic affinities of particular specimens.

Where known species or genera are grouped within a broader classification (e.g. the Bivalvia, in Fig. 8, p. 179, are represented by Modiolopsis, Cuneamya, Cyrtodonta and others), full details are given at the appropriate point in the text.

All tabulated figures refer to original counts of specimens except in the case of the trilobites where numbers represent 25% of the maximum number of either pygidia or cephalas following the rationalizations given above. Although ostracod numbers are assessed by a similar arbitrary method the original counts of valves are given (in brackets). Similarly, for Crinoidea counts of ossicles (in brackets) and stems [in square brackets] are also presented.
The totals of individuals per sample are tabulated and used as a basis for estimating the relative abundance (\%) of the taxa at each horizon. Graphic representations of these distributions are presented in Figs 5 (p. 177), 11 (p. 182) and 16 (p. 189) where the percentage of taxa from all samples with over 20 individuals is plotted; those with less than 50 individuals are indicated by a dot to the left of the columns. A sample with at least 50 individuals is considered to reflect the composition (\%) of the fauna at a given horizon adequately (Watkins 1975), whilst samples with 20-50 individuals, which characterize many less fossiliferous horizons, are invariably found to give consistent percentage values when compared with larger (> 50) samples. Although arbitrarily chosen, these minimum sample size figures ensure at least a consistent and minimum level of statistical constraint on data used for further extrapolation.

The size (weight) of each sample is indicated on most tables and can be used to assess faunal densities.

The total number of taxa in any sample is used as an estimate of the faunal diversity (or species richness) at any horizon. The diversity values presented here cannot necessarily be calculated from the tables since, in certain cases, the suprageneric taxonomic categories represent two or more taxa. In addition to the gross species richness (taxa per sample) presented here corrected, size-standardized diversity graphs are also given using the Margalef (1958) method and the Sanders (1968) rarefaction technique.

Trace fossils

Trace fossils in the Bala to Dinas Caradoc succession are neither common nor varied; for this reason they are not described in detail. However, a few examples are noted (Lockley 1977, 1980); Pickerill (1977) has outlined contemporary Caradoc trace faunas from the Berwyn region.

The faunal succession

The sections (numbered I–XII according to geographical location in Fig. 1, p. 168) are described here in a different sequence based on relative stratigraphical position. The description of these twelve sections is prefaced by the presentation of some additional information on the faunal composition of the Derfel Limestone, the basal member of the Lower Bala Group.

The Derfel Limestone

A large (10 kg) sample from the fossiliferous shelly shales representative of the Derfel Limestone at the type locality (SH 850395) was subjected to routine processing and analysis, to compare the composition of the fauna with that found in the younger Gelli-grin Formation. Since Williams (1973) referred faunas from both stratigraphical levels to the Nicolella association, after having described the older fauna as a Nicolella–Kullervo–Palaeostrophomena association (Williams in Whittington & Williams 1955), both faunas were similarly analysed to establish points of comparison. The sample yielded specimens representative of at least 28 taxa, which are listed below in ranked order of abundance, with corrected numbers of individuals in brackets. Ramose bryozoans (35), Dolerorthis (28), Platystrophia (15), Anisopleurella* (13), Oxoplecia (10), Nicolella (9), Salopia (9), Plectambonitaaceae indet. including Sericoidea and three other* listed genera (9), dendroid graptolite (9), Onniella (6), Leptestina* (4), prasoporid (4). Howellites, Kullervo, Eoplectodonta*, Leptaena, Deacybele ? sp., Broeggerolithus (all 2). ? Lingulella, Palaeostrophomena, Cyrtotonella, Brachiopoda indet., Platylichas, Ostracoda, Macheridia, Crinoidea, Cystoidea, spicules (all 1). A total of 173 individuals is estimated from the above list.

Cyphoproetus is recorded in the Ordovician of Wales for the first time; similarly the occurrence of Lingulella is the first record of a representative of the Inarticulata in this member (Lockley 1980). The relative abundance of the brachiopods Dolerorthis and Nicolella compare with abundances noted in parts of the Gelli-grin Formation, whilst the occurrence of Platystrophia, Anisopleurella, Oxoplecia, Salopia, Onniella, Leptestina, Sericoidea, Eoplectodonta and Palaeostrophomena at both horizons is also noteworthy.
Fig. 3 Sample points in the Afon Twrch section with inset map showing outcrop of sampled beds associated with shell beds and the Frondderw Ash in the upper reaches of Afon Twrch.
The Nant Hir Mudstones, Glyn Gower Siltstones and equivalent deposits

Although Bassett et al. (1966 : 229–230) listed faunas from various horizons in the Nant Hir Formation, no shelly fauna is known from the Nant Hir or the equivalent part of the Ceiswyn Mudstone at any locality south of northing 315. Similarly a large part of the overlying Glyn Gower Formation and equivalent beds to the south are only sparsely fossiliferous, with a low diversity fauna typified by the forms listed by Bassett et al. (1966 : 231). For this reason ambitious sampling schemes were not applied to sections through this part of the succession. However, near the headwaters of Afon Twrch an important series of fossiliferous beds is exposed in a section which contains a newly-discovered outcrop of the Frondderw Ash Member. The fauna, although dominated by Heterorthis and Sowerbyella, also contains elements previously considered as representative of the Nicolella association.

The Afon Twrch section and equivalent beds

The horizons sampled in this section are representative of the upper part of the Llaethnant Siltstone Formation (equivalent to the upper part of the Glyn Gower Formation) and the lower part of the Allt-Ddu Formation. Figs 3, 4 and 5 show respectively the field location and sample grid, faunal distribution and relative abundance patterns relating to this part of the succession. A series of 44 samples (total weight 232 kg) was collected from riverside exposures between map locs 950 (grid ref. 9133 2330) and 958 (9101 2305). However, in this section faulting (Lockley 1977, 1980) has caused duplication of part of the faunal succession (Figs 3, 5). Outcrops of Heterorthis-dominated shell beds are found in the repeated parts of the sequence and, since both outcrops are sampled at close vertical intervals, samples representative of beds thought to be precisely equivalent are bracketed together in Fig. 4.

There is a dual significance in the distribution of taxa recorded in the Twrch section. Firstly, the occurrence of Heterorthis (in abundance) at an horizon some 40 m below the Frondderw Member contrasts with the occurrence, elsewhere to the north, of Heterorthis assemblages in the Lower part of the Allt-Ddu Formation (see Bassett et al. 1966 : 234 and Fig. 6, p. 178).

A second noteworthy aspect of the distributions shown here is the occurrence of certain genera hitherto thought to be confined to the Gelli-grin Formation and the Derfel Limestone Member. These include Orthisocrinia, Nicolella, Onniella, Salapia and Chasmops. Dolerorthis is also recorded; although known from the Upper Allt Ddu Formation it is otherwise confined to the Derfel Limestone and the Gelli-grin Formation. All these forms are characteristic of the Nicolella association and although, with the exception of Onniella, they are rare at this horizon, their occurrence can be considered indicative of the sustained establishment of this type of association, in this general area, through the Lower Caradoc. With the exception of Dolerorthis and Chasmops, representatives of the above-mentioned genera are figured in the taxonomic section.

When traced southwards to a gully on the north side of the Dyfi Valley (map and sample loc. 202, grid ref. 896217) beds equivalent to the Frondderw Member and the underlying shell beds are known (Lockley 1977, 1980). Fig. 5, which outlines the faunal distributions recorded at horizons in this part of the succession, indicates a significant lateral change in the composition of the shell bed beneath the Frondderw Ash. There is no evidence for the presence of Heterorthis and only the occurrence of Onniella, Bicuspinia and the association of a minor ash are comparable with characteristics of the Twrch section. Since these shell beds are associated with thin parallel laminated, storm-generated siltstone sheets they are considered to represent transported material.

It is of particular interest to note that Sowerbyella and Heterorthis are almost entirely mutually exclusive though the two forms occur in abundance in beds separated by only a fraction of a metre (Fig. 5). J. M. Hurst (personal communication, 1978) has noted some degree of segregation between these two genera in the Alternata Limestone of Shropshire. It is possible that such patterns represent a differential response to the effects of transportation. Both forms have atrophied pedicles and would have therefore been relatively susceptible to disturbance by currents.

The Beudy Isaf and Ty-nant sections

Unlike the relatively remote Twrch and Dyfi sections, the Beudy Isaf and Ty-nant sections are
| wt | N | Incertae &
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Subtaxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>H30</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>H29</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>H28</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>H27</td>
<td>4</td>
<td>43</td>
</tr>
<tr>
<td>H26</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>H25</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>H24</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>H23</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>H22</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>H21</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>H20</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>H19</td>
<td>17</td>
<td>141</td>
</tr>
<tr>
<td>H18</td>
<td>2</td>
<td>106</td>
</tr>
<tr>
<td>H17</td>
<td>3</td>
<td>291</td>
</tr>
<tr>
<td>H16</td>
<td>3</td>
<td>118</td>
</tr>
<tr>
<td>H15</td>
<td>6</td>
<td>250</td>
</tr>
<tr>
<td>H14</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>H13</td>
<td>6</td>
<td>169</td>
</tr>
<tr>
<td>H12</td>
<td>5</td>
<td>211</td>
</tr>
<tr>
<td>H11</td>
<td>6</td>
<td>199</td>
</tr>
<tr>
<td>H10</td>
<td>5</td>
<td>362</td>
</tr>
<tr>
<td>H 9</td>
<td>3</td>
<td>99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Africana</th>
</tr>
</thead>
<tbody>
<tr>
<td>H43</td>
<td>6</td>
<td>176</td>
</tr>
<tr>
<td>H42</td>
<td>4</td>
<td>203</td>
</tr>
<tr>
<td>H 8</td>
<td>2</td>
<td>210</td>
</tr>
<tr>
<td>H41</td>
<td>4</td>
<td>141</td>
</tr>
<tr>
<td>H 7</td>
<td>4</td>
<td>210</td>
</tr>
<tr>
<td>H40</td>
<td>10</td>
<td>213</td>
</tr>
<tr>
<td>H44</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>H 6</td>
<td>5</td>
<td>385</td>
</tr>
<tr>
<td>H 5</td>
<td>6</td>
<td>400</td>
</tr>
<tr>
<td>H39</td>
<td>6</td>
<td>109</td>
</tr>
<tr>
<td>H 4</td>
<td>8</td>
<td>365</td>
</tr>
<tr>
<td>H 3</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>H 2</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>H 1</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>H38</td>
<td>65</td>
<td>360</td>
</tr>
<tr>
<td>H37</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>H36</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>H35</td>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>H34</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>H33</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>H32</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>H31</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Fig. 4 Fauna from the Afon Twrch section.
CARADOC FAUNAL ASSOCIATIONS

Fig. 5 Sample points in Afon Twrch section (NE) and the lower part of the Dyfi Valley section (SW) below lowest upper Allt Ddu sample (R086). Dotted lines indicated inferred correlations.

accessible by road. Fig. 6B shows the composition of faunas collected from six stratigraphically sequential horizons in the small stream gully east of Beudy Isaf (9105 2495). The section covers some 20 m of beds, passing upward from the gully to fossiliferous roadside exposures (9115 2505) containing numerous Heterorthis specimens. This section represents a part of the lower to middle Allt Ddu Mudstone (Fig. 1, p. 168) and is not therefore contemporary with the deposit found in the upper reaches of Afon Twrch. Sowerbyella and Heterorthis are again found to be mutually exclusive.

The Ty-nant section (Fig. 6A) is represented by a series of widely-spaced samples recovered from the Nant Bwlch-y-pawl valley east of Ty-nant (9050 2625). The Frondderw Ash exposed
under the bridge in the farmyard succeeds mudstones with *Sowerbyella* shell beds and is overlain by massive siltstones with a sparse fauna. Outcrops higher in the succession at streamside locs 400 m and 700 m east of the farm yield a *Heterorthis*-dominated fauna similar to that recorded in the upper part of the Beudy Isaf section. Loc. 35 (9167 2665) yielded a typical middle to upper Allt Ddu fauna characterized by the presence of graptolites and a nuculid bivalve (Fig. 96, p. 225). Immediately to the north of this locality and higher in the succession on the ridge known as Pen-y-Cefn-Coch two outcrops of upper Gelli-grin beds were discovered. These yielded a fauna dominated by bryozoa, *Leptestiina*, *Dolerorthis* and *Skenidioideae* and containing characteristic elements like *Estontiopsis*, *Nicolella* and *Rhactorthis* (Fig. 7A). Outcrops at loc. 615 (9150 2685) consist mainly of well-bedded limestones typical of the Cymerig Member, whereas at loc. 615A (9170 2700) a coarse tuffaceous, calcarenite lithology is indicative of beds immediately above the limestone member. The recognition of precise stratigraphical relationships is hampered by poor exposure and local faulting (Lockley 1977, 1980).

![Fig. 6 Fauna from the Ty Nant section (A) and the Beudy Isaf section (B).](image)

![Fig. 7 Fauna from Pen y Cefn Coch (A) and Lledwyn Bach (B). (For Conularida read Macheridia.)](image)

The Allt Ddu Formation at Craig y Gath and Rhiw March

Figs 8 and 9 show the distribution of faunas in the upper part of the Allt Ddu Formation at Craig y Gath and Rhiw March respectively and Fig. 11 shows percentage abundances.

Bassett et al. (1966: 235) stated that the Allt Ddu succession 'is best seen at Craig y Gath (915306)' and pointed out that, in addition to considerable repetition caused by faulting at the type locality, the junctions with neither the underlying nor with the overlying member are seen in this area. For this reason Craig y Gath is regarded here as the alternative type section.
The sample grid (covering 150 m of the succession) and a locality map are shown in Fig. 10. The two uppermost samples, recovered from the base of the Gelli-grin Formation, yield a characteristic fauna dominated by *Onniella* and *Eoplectodonta*. However, the distribution of upper Allt Ddu faunas, both here and at Rhiw March, is characterized by an association of mainly long-ranging forms, all of which maintain a relatively consistent pattern of relative abundance throughout the succession. The fauna is dominated by *Howellites, Paracraniops, Macrocoelia* and *Broeggerolithus.*
Fig. 9 Fauna from the Rhiw March section (Allt Ddu beds). (For Bellerophon read Sinuites, and for Conularida read Macheridia.)
Fig. 10 Map of Craig y Gath exposures showing sample points and their stratigraphical relationships.
Fig. 11 Percentage distribution of taxa in the upper part of the Allt Ddu Formation at Craig y Gath and Rhiw March. Abbreviations refer to Paracraniops (Paracr), Dinorthis (Din), Dalmanella (D), Omniella (O), Reuschella (Reu), Bicuspina (Bic), Sowerbyella (Sowerb), Sericoidea (Ser), Macrocoelia (Mac), Leptaena (Lep), Rostricellula (R), Broeggerolithus (Broeg), Brongniartella (B), Sinuites (B¹), Gastropoda (G²), Bivalvia (Bi), Macheridia (C), ramose Bryozoa (B³), prasoprid Bryozoa (B²), Graptoloidea (G). Lithostratigraphical boundary shown by dotted line.
Paracraniops (P. glaber sp. nov., Figs 33–36, p. 207) is an important element throughout the Allt Ddu and is even known from upper Glyn Gower and Llaethnant horizons. This form was previously unrecorded by workers in this area (e.g. Bassett et al. 1966), who ignored it because of uncertainty about its taxonomic affinity (A. Williams, personal communication, 1976). However, in the Caradoc successions of the Berwyn Hills to the east, Pickerill & Brenchley (1979) have described Paracraniops as an important element in the Howellites community. As demonstrated below their observations allow useful comparisons to be made between the composition of related faunal associations.

According to Bassett et al. (1966) and Whittington (1968) Flexicalymene was unknown in the upper part of the Allt Ddu Formation, but it has now been found at several horizons (Figs 8, 9).

Differences in the upper Allt Ddu faunal succession between Craig y Gath and Rhiw March are only pronounced with respect to particular taxa. For example, Dinorthis, which is confined to the uppermost part of the Craig y Gath succession, is unknown at Rhiw March, and Sericoidea, which is commonly found in the Rhiw March succession, is unknown at Craig y Gath and at other Allt Ddu localities north of Ty-nant.

The assemblage zones outlined by Bassett et al. (1966 : 236) are only entirely valid for the area they mapped (1966 : pl. 2). Although the lower, middle and upper Allt-Ddu assemblages (represented respectively by the Heterorthis faunule, a zone of faunal depletion and a zone characterized by ‘new’ stocks) can be recognized, where exposed, as far south as the Ty-nant area – with the possible exception of the upper zone – it is impossible to recognize these divisions within the formation in the Rhiw March section. For example, the zone of faunal depletion noted at Craig y Gath is not characteristic of equivalent horizons in the Rhiw March section (Fig. 2, p. 170). With respect to this zone it is of interest that these argillaceous beds, both at Craig y Gath and other localities (e.g. loc. 35, Fig. 6), are characterized by the presence of graptolites and small nuculoid bivalves.

Characteristic ‘bursts’ of Soverbyella noted by Bancroft (1945) and Bassett et al. (1966 : 236) are apparently widespread in space but, in the upper part of the formation, restricted in time to only a few horizons. A Soverbyella shell carpet or ‘burst’ occurs at about 8 m below the base of the Gelli-grin Formation at Craig y Gath, and at about 16 m below the base at Rhiw March (samples ADU and R18). The likelihood of these two horizons, at localities 7 km apart, being contemporaneous is strongly supported by the occurrence of an unusually high concentration of archeogastropods at an horizon exactly 14 m below the Soverbyella ‘burst’ in both sections (samples ADU and R13). It is suggested that the widespread occurrence of abundant gastropod and Soverbyella specimens at particular horizons could be indicative of a large successful spillover or conditions otherwise conducive to the temporary proliferation of such specific groups.

The uppermost 30 m of the Allt Ddu Formation at Rhiw March are apparently equivalent to only 22 m of beds at Craig y Gath, where erosion before the deposition of the Gelli-grin could have removed some 8 m of uppermost Allt Ddu deposits. Since respective lithologies for these uppermost beds are well-bedded silty mudstones and fine-grained argillaceous mudstones it is probable that reworking took place in the north while continuous deposition prevailed in the south.

Sampled sections through the Gelli-grin Formation

Dominant faunal elements. Although only 60 m in thickness, the Gelli-grin Formation represents the most lithologically varied, fossiliferous, and faunally diverse, stratigraphical unit in the Lower Bala Group; for this reason it has been examined here in particular detail. The formation crops out between Pont y Ceunant (SH 944346, about 1 km north of the type locality west of Gelli-grin farm) and the Rhiw March section in the Dyfi Valley. To the south of this latter locality the formation passes laterally into argillaceous beds representative of the upper part of the Ceiswyn Mudstone and the overlying Nod Glas Formation. The distribution of faunas in five sections through the formation is shown in Figs 7B, p. 178, and 12–15. The chosen sections are at the following localities: west of Gelli-grin farm, 944340 (Fig. 12), Maes-Meillion, 925305 (Fig. 13, p. 185), Lledwyn Bach, 912279 (Fig. 7B), Nant Tan y Bwlch, 914240 (Fig. 14, p. 186) and the
cliffs north of Rhiw March, 899219 (Fig. 15, p. 187). All sections, with the exception of the poorly-exposed outcrops at Lledwyn Bach, have been sampled thoroughly throughout.

In the Tan y Bwlch and Rhiw March sections the uppermost 20 m of beds not only belong to the Gelli-grin Formation, but also represent the northern part of the outcrop of the Nod Glas Formation now known to be equivalent to this upper part of the Gelli-grin Formation (Lockley 1977, 1980). The relative abundance of faunas in the four main Gelli-grin sections is shown in Fig. 16, p. 189.

At the type locality a series of 15 samples was collected. Here the underlying uppermost Allt Ddu beds, where fossiliferous, contain a fauna dominated by Dinorthis, Howellites and bivalves. The succeeding coarse Pont y Ceuant Ash is unfossiliferous at this locality but is in turn overlain by highly fossiliferous, tuffaceous mudstones containing a diverse brachiopod-dominated fauna. Various elements of this lowermost Gelli-grin faunas, in particular Eoplectodonta, are found so closely packed that in a few instances they show primary growth distortions; such a phenomenon indicates an in situ association. These fossiliferous beds are characterized by the following rapidly changing succession of local associations; an association dominated by Onniella, Eoplectodonta, Bicuspinia and Reuschella is succeeded firstly by a Nicolella-dominated fauna, then by a Skenidioides-dominated fauna. These horizons are in turn overlain by beds containing Dalmanella, Leptestiina and Howlettes. A species of the latter, *H. antiquior* (M'Coy), occurs in particular abundance in the middle part of the Gelli-grin Formation and is associated with *Rhacontorthis* and an abundance of the trilobites *Klouekeia*, *Broeggerolitus* and, to a lesser extent, *Flexicalymene*.

Although the middle part of the formation is not entirely exposed, examination of other contemporary sections has revealed that the *Howlettes*-dominated fauna persists into sub-Cymerig beds. The change in facies associated with the onset of Cymerig Limestone deposition...
is accompanied by a corresponding change in the fauna. Cymerig and supra-Cymerig beds contain a fauna dominated by *Dolerorthis, Nicolella, Eoplectodonta* and *Skenidioides*. Other characteristic elements include *Cremnrorthis, Chasmops* and *Estoniops*; the latter form is only known from horizons above the limestone member.

At Maes Meillion the faunal succession is remarkably similar to that recorded at Gelli-grin (Figs 12, 13). Notable differences include the composition of the uppermost Altt Ddu fauna (dominated by *Bicuspona, Reushella* and gastropods) and the occurrence of a fauna in the upper part of the Pont-y-Ceunant Ash Member which is thinner and finer here than to the north. The faunal succession throughout the formation mirrors the pattern observed in the Gelli-grin section; all the dominant genera named above are found at equivalent horizons in this section 4 km to the south.

Three samples from newly-discovered Gelli-grin exposures on Lledwyn Bach have yielded a fauna characteristic of the lower to upper middle part of the formation (i.e. from 5–10 m to 40–45 m above the base). The lowest, poorly-exposed beds contain an association characterized by *Eoplectodonta, Dalmanella, Howellites* and *Leptestiina* and are succeeded, after a 35 m gap, by larger outcrops yielding (from two sampled horizons 1 m apart) a fauna dominated by *Howellites* and trilobites (Fig. 7B, p. 178).

Analysis of the Gelli-grin sequences in the Tan y Bwlch and Rhwi March sections reveals patterns of faunal succession in the lower and middle part of the formation which compare closely with those noted in the sections to the north (Figs 14–16). However, the faunal succession in the upper part of the formation differs from that recorded to the north and corresponds to a distinctive lateral facies change occurring south of Pen y Cefn Coch. At Tan y Bwlch the Gelli-grin Formation is only about 45 m in thickness and is mainly argillaceous throughout.

The lower part of the formation at Tan y Bwlch is dominated by *Onniella* and *Eoplectodonta*,

Table 1 Fauna from the Maes-Meillion section.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>G629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G627</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>G626</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>G621</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>G521</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>G629</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>G629</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>G629</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>G629</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>G629</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 13 Fauna from the Maes-Meillion section.
with *Skenidioides* and *Nicolella* also representing important elements. The middle part of the formation is dominated by *Howellites* and, to a lesser extent, *Kloucekia*, *Broeggerolithus* and the Ostracoda. However, in the uppermost part of the formation (i.e. the Dyfi Mudstone Member) the fauna is characterized mainly by *Sericoidea* and rarer forms like *Cyclospira*.

In the Rhiw March section the Gelli-grin Formation has been sampled more thoroughly than at any other locality. The pattern of faunal distribution is similar to that noted in the Tan y Bwlch section. The lower beds are dominated by *Onniella* and *Bicuspinia*, with *Eoplectodonta* being less abundant than at contemporary horizons to the north. The *Onniella*-dominated beds pass up into strata in which *Nicolella* and *Skenidioides* are important elements and are in turn succeeded by mudstones of the middle part of the formation which are dominated by *Howellites*, *Kloucekia*, *Broeggerolithus* and the Ostracoda. The upper (Dyfi Mudstone) part of the formation is dominated by *Sericoidea* and *Onniella* in association with less abundant forms including *Skenidioides*, *Cyclospira*, *Eoplectodonta*, *Nicolella*, various inarticulates and macheridians. The uppermost metre of the Rhiw March succession consist of soft, coal-black graptolitic shale containing a monospecific assemblage of *Climacograptus minimus* (Carruthers); specimens were not counted for inclusion in Fig. 15.

Non-dominant elements in the Gelli-grin Formation.

Throughout its area of outcrop the lowermost beds of the formation contain a number of brachiopod genera which are either unique to this part of the Lower Bala Group or only otherwise known from the Derfel Limestone. These genera include *Pseudolingula*, *Platystrophia*, *Anisopleurella*, *Oxoplecia*, *Palaeostrophomena* and *Bimuria*. Of these *Bimuria* was previously unknown in Wales and *Palaeostrophomena* and *Anisopleurella* were hitherto unknown in the Gelli-grin Formation. *Salopia* is also characteristic of the lower part of the formation but, in addition to being known from the Derfel Limestone, is now also recorded from horizons beneath the Frondderw Ash in Afon Twrch. A few specimens assigned to *Kjaerina* (*Hedstroemina*) have been recovered from sample R28; this genus was previously only known from the Glyn Gower 'unit' of the Lower Bala Group (Williams 1963: 460). The distribution of seven of the eight above-mentioned genera is shown in Figs 12-15; the eighth genus,

Fig. 14 Fauna from the Nant Tan y Bwlch section. (For Conularida read Macheridia.)
Fig. 15 Fauna from the Rhiw March section (Gelli-grin/Nod Glas beds). (For Bellerophon read Sinutes, and for Conularida read Macheridia.)
The Pistyll sinella, than the (1963) trilobites are descriptions restriction examination of occur craniops macellus Upper of the sections, specific affinities member or a part of the formation (Fig. 15).

The upper part of the formation has yielded several taxa which were hitherto unrecorded in the Upper Bala Group. These forms, which include Paterula, Palaeoglossa, Protozyga, Phillipsinella, Lonchodomas and Sphaeroctyph, were all recovered from the Cymerig Limestone member or associated beds in the Tan y Bwlch and Rhiw March sections (Figs 14–15). The discovery of Protozyga at these localities represents the first record of this genus in Wales. The trilobites Phillipsinella, Lonchodomas and Sphaeroctyph are all known from the Upper Bala Group of this area but were previously unknown at these earlier horizons. Cyclospira is an important element of the Cymerig fauna at these two localities; although recorded by Williams (1963) the material recovered in this study has facilitated a more thorough appraisal of the specific affinities and distribution of this form than was hitherto possible. Full taxonomic descriptions are given below, p. 219.

The Pistyll Gwyn, Y Ceunant and Aber-Cowarch sections

Fig. 17 contains faunal data derived from the study of the three above-named sections. These sections, the southernmost in the area under study, cover the uppermost 30 m of the Caradoc succession which, at all localities, comprises the Nod Glas Formation and a part of the underlying Ceiswyn Mudstone. The faunal succession is similar at each locality.

The grey mudstones underlying the Dyfi Mudstone are dominated by Howellites and, to a lesser extent, the trilobites Kloucekia and Broeggerolithus. These are succeeded by the rather more pyritous, grey Dyfi Mudstone which is dominated by the small brachiopod Sericoidea. The member is also characterized by the variable occurrence of Kloucekia, Broeggerolithus, Cyclospira and the Macheridia. At Pistyll Gwyn these mudstones contain a locally-developed phosphatic limestone which contains Sericoidea, Broeggerolithus, Nuculites and Simities. The discontinuous Cymerig Limestone Member, consisting of variably fossiliferous, crystalline nodules measuring about 30 cm x 15 cm, occurs at an horizon in the upper part of the Dyfi Mudstone.

Above the Cymerig Member the Dyfi Mudstone grades rapidly up into the sparsely fossiliferous or entirely unfossiliferous, dark grey Corris shale.

Faunal associations

Introduction

The data presented in Figs 4–17 represent as thorough a quantitative description of the faunal content of the succession as the sampling scheme allows. Since only a cursory glance at these data indicates that samples from like facies consistently contain recurrent combinations of taxa in similar proportions (whilst samples from other facies contain different combinations and proportions of mainly different taxa) it must be concluded that the associations are largely

Fig. 16 Percentage distribution of taxa in named sections through the Gelli-grin Formation. Abbreviations refer to Nicoletta (Nic), Dolerorthis (Dol), Rhactorthis (R), Platystrophia (P), Skenidkoidea (Sk), Cremnsthrough (C), Dalmanella (Dal), Reuchella (Re), Bicuspina (B), Leptestina (Ls), Sowerbyella (S), Eoplectodonta (Eop), Bimuria (B), Strophomenacea/Macrococella (S), Leptaena (La), Palacostrophomena (P), Cyclospira (Cy), Kloucekia (Kl), Broeggerolithus (Br), Gastropoda (G), Macheridia (Con), ramose Bryozoa (B3), prasoporid Bryozoa (B2), Ostracoda (Ost). Dashed lines represent boundaries between faunal associations.
Fig. 17 Fauna from the Pistyll Gwyn section (PG), the Y Ceunant section (YC) and the Aber Cowarch section (AB). (For Bellerophon read Sinuites, and for Conularida read Macheridia.)
facies-related and that the sampling procedures consistently provide an adequate census method. This being the case it is necessary to proceed by outlining distinctive associations and assemblages and testing that at least in the general sense they differ significantly from each other in terms of their overall composition.

Although the associations named here (see also Lockley 1978) were picked out initially by 'simple inspection' of the data (cf. Watkins 1975: 48) samples considered representative of given associations were compared with each other and with those from other associations using the Similarity Index or Index of Affinity (Murray & Wright 1974: 3; Rogers 1976: 504-506). Details are given below. Furthermore, all numerical data are presented here (Figs 4-17) in such a way as to be readily available for subjection to further quantitative analysis.

The associations and assemblages defined here (in descending order of their stratigraphical occurrence) are as follows.

5. The *Onniella–Sericoidea* and the *Sericoidea* Associations from the Nod Glas Formation respectively north and south of Llanymaeddy
4. The *Howellites–Kloucekkia* Association from the middle part of the Gelli-grin Formation
3. The *Nicoella–Onniella* Association from the Lower part of the Gelli-grin Formation (with variant earlier and later phases from the Derfel Limestone and upper part of the Gelli-grin Formation respectively)
2. The *Howellites–Paracramans* Association from the upper part of the Allt Ddu Formation
1. The *Heterorthis* Assemblage from respective upper and lower parts of the Llaethnant and Allt Ddu Formations.

The term 'assemblage' is used to distinguish clearly transported faunas from those considered to be either *in situ* or of the 'disturbed neighbourhood' type (*sensu* Scott 1974: 321), which are referred to here as 'associations'. The term 'phase' is used informally to indicate the different time intervals represented by the repetitive stratigraphical occurrence of the same (albeit varying) faunal association.

Although multivariate analysis has not been used to cluster like samples and to define associations, the use of the Similarity Index or Index of Affinity (IA) to test affinities between the majority of the larger representative samples (90 in all) serves the same purpose and clearly indicates that the associations named herein are relatively homogeneous in internal composition whilst being quite distinct from each other. Over 220 representative IA values consistently indicate that intra-association IA values are high whilst inter-association IA values are very low. For example, respective mean IA values for the *Howellites–Paracramans* and the *Howellites–Kloucekkia* Associations (with range in brackets) and number of IA values considered [in square brackets] are 61.4% (40-91%) [16] and 72.8% (37-98%) [54]. Similarly, respective values for the *Nicoella–Onniella* Association in the lower part of the Gelli-grin Formation and the *Onniella–Sericoidea* Association are 57.4% (17-87%) [59] and 48.8% (7-83%) [36], whilst the phase of the *Nicoella–Onniella* Association in the upper part of the formation exhibits lower values, i.e. 40.8% (20-63%) [10]. Although mean IA values are below the 80% level considered to indicate 'identical assemblages' (Murray & Wright 1974: 3), individual IA values above 80% are recorded for each of the associations except the phase of the latter one mentioned here which in any case is described from only a small number of samples. Mean IA values show a marked contrast to the low inter-association values calculated in order to compare the *Howellites–Kloucekkia* Association with both the *Howellites–Paracramans* Association and the *Nicoella–Onniella* Association (lower Gelli-grin phase). Respective mean IA values (with range) and number of IA values used, as before, are 7.8% (3.2-13.2%) [4] and 9.9% (2.5-13.1%) [4]. An outline of these recognizable associations is presented in quantitative terms using the parameters of persistence of occurrence and mean relative abundance. Fig. 18 outlines the stratigraphical distribution of associations identified in the fossiliferous upper part of the Caradoc succession between Bala and Dinas Mawddwy, and Fig. 19 outlines their composition.

Calculations of the relative abundance of taxa from each sample (Figs 5, p. 177, 11, p. 182, 16, p. 189) permitted the construction of a series of tables (one for each sample) in which faunal elements were ranked in order of abundance (Lockley 1977). The numerically dominant taxa
which make up 80% of the fauna may be regarded as the Trophic Nucleus; Neyman (1967) proposed this quantitative definition of the nucleus originally defined by Turpaeva (1948). The dominant faunas listed in Fig. 19 therefore represent the Trophic Nucleus of their respective named associations either at named localities or for the association as a whole.

Although some palaeontologists (e.g. Titus & Cameron 1976) have named associations or communities after their rarer component species, such methods do not conform with the more popular tendency of naming associations after their dominant component taxa. The classic work of Petersen (1924), summarizing his studies of marine animal communities in Danish waters, included an outline of four categories of component taxa - 1st, 2nd and 3rd order characterizing species and associated animals. Thorson (1957 : 477) subsequently proposed that these respective characterizing species be quantitatively defined as representing at least 5, 5, 10 and 2% of the total living weight (biomass) in at least 50, 50, 70 and 25% of samples from any given community.

The only differentiation made between 1st and 2nd order characterizing species was that 1st order species occur 'practically everywhere' in a specific community whereas 2nd order species occur 'only in certain parts' of such specific communities. Biomass estimates cannot be derived from fossil associations without at least making numerous assumptions and repetitive measurements for the calculation of the mean size of each population. Nevertheless, in the absence of other evidence, relative abundance can be used as it is in this study as an alternative estimate of an association's composition. If this is done with the aim of identifying characterizing species it becomes clear that only the dominant species fall within this category.

Named Associations from the Caradoc Series of the Bala to Dinas Mawddwy area

Associations in the Allt Ddu Formation

(i) The Howellites–Paracraniops Association, characteristic of the upper part of the Allt Ddu Formation, contains no genera, other than these two and Broeggerolithus, which are representative of biospecies which could be considered strictly analogous to 1st or 2nd order characterizing species (Fig. 19). Although several other genera listed here occur in at least 50% of samples, in

![Stratigraphical distribution of named faunal associations in the upper part of the Lower Bala Group (drawn to scale).](image-url)
<table>
<thead>
<tr>
<th>TAXA/GENERA</th>
<th>OCCURRENCE</th>
<th>MEAN ABUNDANCE</th>
<th>TAXA/GENERA</th>
<th>OCCURRENCE</th>
<th>MEAN ABUNDANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howellites</td>
<td>12/12</td>
<td>100 %</td>
<td>55.4 %</td>
<td>23/24</td>
<td>95.8 %</td>
</tr>
<tr>
<td>Paracraniops</td>
<td>12/12</td>
<td>100 %</td>
<td>11.9 %</td>
<td>17/24</td>
<td>70.8 %</td>
</tr>
<tr>
<td>Bryozoa</td>
<td>12/12</td>
<td>100 %</td>
<td>5.9 %</td>
<td>22/24</td>
<td>91.7 %</td>
</tr>
<tr>
<td>Brosagerolithus</td>
<td>12/12</td>
<td>100 %</td>
<td>4.02 %</td>
<td>24/24</td>
<td>100 %</td>
</tr>
<tr>
<td>Macrocellia</td>
<td>10/12</td>
<td>83.3 %</td>
<td>4.32 %</td>
<td>8/24</td>
<td>33.3 %</td>
</tr>
<tr>
<td>Brounapiartella</td>
<td>8/12</td>
<td>66.7 %</td>
<td>1.19 %</td>
<td>20/24</td>
<td>85.3 %</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>5/12</td>
<td>41.7 %</td>
<td>1.2 %</td>
<td>19/24</td>
<td>79.2 %</td>
</tr>
<tr>
<td>Bivalvia</td>
<td>5/12</td>
<td>41.7 %</td>
<td>1.13 %</td>
<td>8/24</td>
<td>33 %</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>5/12</td>
<td>41.7 %</td>
<td>0.86 %</td>
<td>16/24</td>
<td>66.7 %</td>
</tr>
<tr>
<td>Reuscheilla</td>
<td>4/12</td>
<td>33.3 %</td>
<td>4.41 %</td>
<td>5/24</td>
<td>20.8 %</td>
</tr>
<tr>
<td>Dinorthia</td>
<td>3/12</td>
<td>25.0 %</td>
<td>2.09 %</td>
<td>0/24</td>
<td>-</td>
</tr>
<tr>
<td>Leptaena</td>
<td>3/12</td>
<td>25.0 %</td>
<td>0.68 %</td>
<td>10/24</td>
<td>41.7 %</td>
</tr>
<tr>
<td>Soberbella</td>
<td>2/12</td>
<td>16.7 %</td>
<td>3.79 %</td>
<td>1/24</td>
<td>4.7 %</td>
</tr>
<tr>
<td>Ricuspina</td>
<td>2/12</td>
<td>16.7 %</td>
<td>0.34 %</td>
<td>14/24</td>
<td>58.3 %</td>
</tr>
<tr>
<td>Sericoidea</td>
<td>0/12</td>
<td>-</td>
<td>-</td>
<td>.12/24</td>
<td>50.0 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>94.72%</td>
<td></td>
<td></td>
<td>20.6 %</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onniella</td>
<td>26/26</td>
<td>100 %</td>
<td>27.52 %</td>
<td>0/7</td>
<td>-</td>
</tr>
<tr>
<td>Bryozoa</td>
<td>26/26</td>
<td>100 %</td>
<td>17.11 %</td>
<td>6/7</td>
<td>85.7 %</td>
</tr>
<tr>
<td>Skenidioides</td>
<td>23/26</td>
<td>88.5 %</td>
<td>6.08 %</td>
<td>4/7</td>
<td>57.1 %</td>
</tr>
<tr>
<td>Ricuspina</td>
<td>22/26</td>
<td>84.6 %</td>
<td>7.11 %</td>
<td>1/7</td>
<td>14.3 %</td>
</tr>
<tr>
<td>Eoplectodonta</td>
<td>18/26</td>
<td>69.2 %</td>
<td>10.99 %</td>
<td>5/7</td>
<td>71.4 %</td>
</tr>
<tr>
<td>Reuscheilla</td>
<td>17/26</td>
<td>65.4 %</td>
<td>2.93 %</td>
<td>3/7</td>
<td>42.8 %</td>
</tr>
<tr>
<td>Nicoleta</td>
<td>15/26</td>
<td>57.7 %</td>
<td>4.26 %</td>
<td>5/7</td>
<td>71.4 %</td>
</tr>
<tr>
<td>Dolerorthia</td>
<td>7/26</td>
<td>26.9 %</td>
<td>0.32 %</td>
<td>7/7</td>
<td>100 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>75.92%</td>
<td></td>
<td></td>
<td>27.72 %</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howellites</td>
<td>21/21</td>
<td>100 %</td>
<td>65.99 %</td>
<td>10/10</td>
<td>100 %</td>
</tr>
<tr>
<td>Klouckelia</td>
<td>21/21</td>
<td>100 %</td>
<td>3.69 %</td>
<td>3/10</td>
<td>30 %</td>
</tr>
<tr>
<td>Brosagerolithus</td>
<td>20/21</td>
<td>95.2 %</td>
<td>3.83 %</td>
<td>4/10</td>
<td>40 %</td>
</tr>
<tr>
<td>Sericoidea</td>
<td>12/21</td>
<td>57.1 %</td>
<td>2.46 %</td>
<td>7/10</td>
<td>70 %</td>
</tr>
<tr>
<td>Skenidioides</td>
<td>11/21</td>
<td>52.4 %</td>
<td>0.97 %</td>
<td>0/10</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>75.92%</td>
<td></td>
<td></td>
<td>25.6 %</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onniella</td>
<td>16/16</td>
<td>100 %</td>
<td>35.77 %</td>
<td>3/7</td>
<td>42.1 %</td>
</tr>
<tr>
<td>Dalamanellidae</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1/7</td>
<td>100 %</td>
</tr>
<tr>
<td>Sericoidea</td>
<td>14/16</td>
<td>87.5 %</td>
<td>38.39 %</td>
<td>10/10</td>
<td>100 %</td>
</tr>
<tr>
<td>Bryozoa</td>
<td>13/16</td>
<td>81.2 %</td>
<td>2.66 %</td>
<td>3/10</td>
<td>30 %</td>
</tr>
<tr>
<td>Skenidioides</td>
<td>11/16</td>
<td>68.7 %</td>
<td>4.51 %</td>
<td>4/10</td>
<td>40 %</td>
</tr>
<tr>
<td>Conularida</td>
<td>11/16</td>
<td>68.7 %</td>
<td>5.52 %</td>
<td>7/10</td>
<td>70 %</td>
</tr>
<tr>
<td>Cyclospica</td>
<td>7/16</td>
<td>43.7 %</td>
<td>2.27 %</td>
<td>0/10</td>
<td>-</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>7/16</td>
<td>43.7 %</td>
<td>2.18 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Klouckelia</td>
<td>7/16</td>
<td>43.7 %</td>
<td>1.13 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eoplectodonta</td>
<td>6/16</td>
<td>37.5 %</td>
<td>2.99 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brosagerolithus</td>
<td>5/16</td>
<td>31.2 %</td>
<td>2.25 %</td>
<td>3/7</td>
<td>42.8 %</td>
</tr>
<tr>
<td>Nicoleta</td>
<td>5/16</td>
<td>31.2 %</td>
<td>0.59 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Graatoloidea</td>
<td>0/16</td>
<td>-</td>
<td>-</td>
<td>1/7</td>
<td>14.3 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>99.28%</td>
<td></td>
<td></td>
<td>26.88%</td>
</tr>
</tbody>
</table>

Fig. 19 A & B. Dominant and persistent taxa/genera in the Howellites–Paracraniops association in the upper part of Allt Ddu Formation at Craig y Gath (A) and Rhiw March (B); in the Nicoletta–Onniella association from the (C) lower and (D) upper parts of the Gelli-grin Formation; in the Howellites–Klouckelia association from the middle part of the Gelli-grin Formation (E) and the marginal Howellites association from the uppermost Ceiswyn Mudstone Formation (F); in the Onniella–Sericoidea association (for Conularida read Macheridia) (G) and the Sericoidea association (H) of the Dyfi Mudstone.
most cases their mean relative abundance is less than 5%. With the probable loss of soft-bodied representatives of the fauna in the process of fossilization, all relative abundance figures would tend to be proportional overestimates. It is therefore probable that even fewer species can be confidently considered analogous to characterizing species (sensuThorson 1957).

Although it is only possible confidently to use samples with at least 20 individuals for the purposes of calculating relative mean percentages of taxa comprising associations, the calculation of mean diversity is derived from the consideration of all samples in order to avoid an overestimate of diversity. The Howellites-Paracranioïps Association has a mean diversity of 9.68 but can locally be found to yield samples with a diversity of up to 17. The association is named after Howellites ultimus Bancroft and Paracranioïps glaber sp. nov. (p. 204) which both occur persistently and relatively abundantly; respective values for the two sections studied are 95.8-100% occurrence (with mean relative abundance of between 37.4 and 53.5%) for H. ultima and 70.8-100% occurrence (with a mean relative abundance of between 7.1 and 12%) for P. glaber. Broeggerolithus (cf. B. souleynensis Bancroft) is of equal importance, occurring in all samples with a mean relative abundance of between 4 and 8.7%. Bryozoa are also an important element of the fauna with two morphospecies (a prasoporid and a ramose bryozoan) representing 6-13.4% of the fauna in almost all samples (92-100%); see Fig. 19, p. 193. Amongst the other more important associated species are MacrococellaprolataWilliams and Reuschella horderleyensis undulata Williams from the Craig y Gath section and Bicuspina spiriferoides (M'Coy), Sericoidea sp. and Brongniartella cf. minor (Salter) from the Rhiw March section, all of which occur in at least 25% of samples with a mean relative abundance of between 2 and 4.7%. The Gastropoda (including Simuites sp. and Cyclonema sp.) are an important element of the association at the latter locality.

Although there is variation in the composition of the association between the two localities of Craig y Gath and Rhiw March its extent is insufficient to suggest the existence of more than one association at these horizons.

Associations in the Gelli-grin Formation

The Gelli-grin Formation is characterized by three stratigraphically successive associations (Figs 16, 18), which are here described in sequence. These are the Nicolella-Onniella Association (phase 2) and the Howellites-Kloucekia Association respectively from the lower and middle parts of the formation between Gelli-grin and Rhiw March, and also the Nicolella-Onniella Association (phase 3) of the upper part of the formation between Gelli-grin and Pen y Cefn Coch. This latter association is related to the association from the lower part of the formation and to the Onniella-Sericoidea Association of the Dyfi Mudstone.

(ii) The Nicolella-Onniella Association (phase 2). From the lower part of the Gelli-grin Formation this is a high diversity association (mean 17.5) named after Nicolella actoniae obesa Williams and Onniella ostentata Williams. The latter form is particularly abundant (Fig. 19) and is associated with large numbers of Eoplectodonta rhombica (M'Coy). This association is to some extent similar in composition to the Derfel Limestone association (phase 1 of the Nicolella-Onniella Association), which includes Dolerorthis tenuicostata Williams, Nicolella humilis Williams, Onniella aff. avelinei Bancroft and Eoplectodonta lenis Williams amongst the most common Brachiopoda. The Derfel Limestone association is also of a high diversity, yielding up to 28 species from a single large sample; such values compare with maximum values of 25 for samples from the lower part of the Gelli-grin Formation. The association from the upper part of the Gelli-grin Formation (phase 3; mean diversity 13.7 and maximum 19) is also referred to here as the Nicolella-Onniella Association although it is again different in composition from the association in the lower part of the formation (Fig. 19). N. actoniae obesa Williams and E. rhombica (M'Coy) are common at horizons in both the lower and upper parts of the formation; however, Dolerorthis ductonensis prolixa Williams, which is uncommon from the lower part of the formation, occurs abundantly in the uppermost parts. O. ostentata Williams is not recognized from the upper part of the formation; the Dalmanellidae are poorly represented and assigned to Onniella.
sp., Dalmanella sp. or in a few cases Bancroftina sp.; Figs 7A, 12 and 13 do not distinguish between these three genera.

The composition of the Nicolella–Onniella Association (phase 2) from the lower part of the Gelli-grin Formation is calculated from the analysis of samples GG1b–GG1e, GG2a–GG2c, ADZ, ADY, TB9–TB13 and R24–R35. The summary of these data, shown in Fig. 19, indicates that, at this level, Onniella and Eopectodonta are analogous to ‘characterizing species’ with Reuschella and Nicolella representing ‘associated’ forms. Although Skenidioides, Bicuspta and Reuschella are important constituents of this association, conspecific forms also constitute a significant element in other associations; they cannot therefore be considered strictly analogous to 1st or 2nd order characterizing species in the Nicolella–Onniella Association.

There is some lateral variation in the composition of the lower Gelli-grin faunal association; this corresponds to a decrease in sediment coarseness towards the SSW. The most notable changes are a relative increase in the abundance of Bicuspta and Leptaena in this direction and a corresponding decline in the abundance of Eopectodonta and Nicolella (Figs 12, 13). Rare occurrence of Sowerbyella in the Rhiw March section are unique to the formation and indicative of the modification of this association towards the SSW.

(iii) The Howellites–Kloucekia Association. The middle part of the Gelli-grin Formation is mainly argillaceous; representative samples from beds GG1f–GG1gl, GG2d–GG2g, TB14–TB17 and R36–R44 reveal a faunal association dominated by Howellites antiquior (M’Coy), Kloucekia apiculata (M’Coy) and Broeggerolithus nicholsoni (Reed). The association has a mean diversity of 12-7. Maximum diversity values in excess of 20 have been recorded from samples GG1gl, GG2d and GG2g; however, these are atypical in being recovered from horizons closely associated with overlying and underlying strata containing higher diversity associations. The other 18 samples, particularly those from Tan y Bwlch and Rhiw March, exhibit lower diversities; minimum values do not exceed 4.

Although Kloucekia and Broeggerolithus are considered to each represent less than 4% of the total fauna (Fig. 19) in this association (when using the arbitrary correction factor of 4 as a compensation for ecdysis), it is clear that a correction factor of say 2 or 3 would indicate a mean relative abundance analogous with that of ‘characterizing’ species. Sericoidea, whilst being analogous to an ‘associated’ species, is known to be mainly restricted to the two southern sections (Figs 12, 13). The occurrence of Skenidioides in most samples from the Gelli-grin associations is noted.

(iv) The Nicolella–Onniella Association (phase 3). The composition of this in the upper part of the Gelli-grin Formation differs from that noted for the related phases of the association elsewhere in the succession; for example, it is only at this level that Dolerorthis dufionsis prolix Williams can be considered analogous to a characterizing species (Fig. 19). Differences in composition are thought to be directly related to the distinctive calcareous facies associated with the Cymerig Limestone Member north of Pen y Cefn Coch. Caradoc strata above the Cymerig member in this region consist predominantly of coarse, shelly calcarenites containing tuffaceous material and ?ferruginous oolites. At certain horizons (GG2k and sample 615) vertical crinoid stems and bryozoan fronds are noted; these are considered indicative of the rapid deposition of coarse material in a shallow-water environment. Bulk samples are only readily obtained from a few horizons in the Cymerig and higher beds; in general the limestones and associated rocks are unyielding enough to present practical sampling problems. Of the 9 samples collected in this study only 7 yielded sufficient specimens to permit the estimation of relative abundances (Fig. 19). Owing to the small number of relatively variably composed samples, it is considered that the only clearly-defined characteristics which distinguish this facies fauna from related associations elsewhere in the area is the relative dominance of Dolerorthis and Nicolella and the small numbers of dalmanellids.

(v) The Onniella–Sericoidea Association. This facies fauna is found in association with the argillaceous Dyfi Mudstone Member between Tan-y-Bwlch and Rhiw March (Fig. 18). It is
laterally equivalent to the coarse, calcareous beds containing the continuous Cymerig Member north of Pen y Cefn Coch and, although containing the discontinuous ‘distal’ parts of the Cymerig Member south of this locality, otherwise represents the most marked lateral facies and faunal change observed in this study.

The association is dominated by Sericoidea abdita complicata subsp. nov. (p. 212) and Omniella sp., which between them represent over 75% of the total fauna and are the only forms analogous to ‘characterizing’ species. Poor preservation (associated with relatively intense cleavage in this argillaceous facies) militates against sound statistical assessment of the Omniella specimens for a specific determination. Less distorted specimens from the Cymerig Member display only external features.

Cyclospira, Skenidioides and Eoplectodonta, together with the ostracod Tallinnella, can all be considered analogous to ‘associated animals’. The association has a mean diversity of 10-9 with maximum values (up to 17) representative of the Limestone Member and associated more calcareous shales. Broeggerolithus and Flexicalymene are particularly abundant at certain horizons (e.g. R49) in the Rhiw March section.

Similarities between the fauna from this association and the Nicoella–Omniella Association to the north help substantiate correlations between quite different facies, respectively of argillaceous and coarse calcareous sediment (Fig. 18). It is of interest to note that Nicoella, Dolerorthis, Eoplectodonta, Leptestiina, Reuschella, Rhactorthis, Leptaena, Flexicalymene, Cyclospira, Omniella and Sericoidea are amongst the genera common to both associations; the latter three dominate in the Omniella–Sericoidea Association whilst the other forms, common to the north, are rarer here to the south. Protozyga, Paterula, Phillipinella, Louchodomas and Sphaerocoryph are all unique to this association being currently unknown elsewhere in the area.

(vi) The Sericoidea Association, although related to the Omniella–Sericoidea Association, is considerably less diverse (mean diversity 4-25, maximum 8). The association characterizes the Dyfi Mudstone Member between Pistyll Gwyn and Aber Cowarch (Fig. 18). Representative samples (PG1a, PG1b, PG2, YC3, YC4, YC5, AB4 and AB5) indicate an association entirely dominated by Sericoidea with a few poorly-preserved macheridians and dalmanellids showing distribution patterns analogous to those of ‘associated animals’. Broeggerolithus, Kloucekia and unidentifiable graptolites also occur. Cyclospira and a spired gastropod are known from the Cymerig member whilst additional molluscan material is known from the locally-developed underlying limestone beds at Pistyll Gwyn.

(vii) The Marginal Howellites Association. Samples PG, YC1–2, AB05–09 and AB1–2 (Fig. 17, p. 190) have yielded a low diversity (mean 3·25) Howellites-dominated fauna. Although preservation of most of the material is poor it has been possible to identify H. antiquior (M‘Coy) as the dominant species (83·7%). Sericoidea is also ‘characteristic’ of this association; however, its abundance is almost one order of magnitude less than in the succeeding Sericoidea Association. Kloucekia and Broeggerolithus both occur relatively abundantly in beds underlying those associated with the first major influx of Sericoidea (i.e. samples PG, YC2 and AB3; Fig. 17). Elsewhere throughout these successions their distribution is variable.

The Marginal Howellites Association is clearly related to the Howellites–Kloucekia Association typical of the middle part of the Gelli-grin Formation both in terms of faunal composition and stratigraphical relationships. However, since the Cowarch Phosphate Bed and associated shell beds may be contemporaneous with the Pont y Cenant Ash (Lockley 1980), the Marginal Howellites Association could also have been established in the Abercowarch area in Lower Gelli-grin times and subsequently migrated diachronously northwards in middle Gelli-grin times.

(viii) The Graptolitic Association. The uppermost part of the succession in the Tan y Bwlch to Aber Cowarch sections (Figs 13–17) consists of dark grey or black graptolitic or virtually unfossiliferous shales referred to as the Corris Shale Member (Lockley 1977, 1980). These beds are lithostratigraphically equivalent to the graptolitic Nod Glas seen at the type locality Nant y Nod. Since these dark pyritous shales have yielded only one or two small shelly fossils (samples
There are byella values diversity are. Similarly, (maximum from considered Reuschella and elements of number established Antia chosen and 1958) a standard index in diversity the in contrast, the sample H2, Reuschella and of Index these contrast and samples H2, H4–H6 and H16–H19 are dominated by Sowerbyella, sample H7 is dominated by Reuschella and the Dalmanellidae whilst samples H8–H15 are dominated by Heterorthis. Mean Index of Affinity (IA) values for samples H8–H15 and H16–H19 respectively are 84·3 and 88·2; these contrast markedly with the IA value of 5·0 derived from a comparison of samples H15 and H16 and serve to demonstrate just how pronounced the sudden changes in faunal composition are. Similarly, the mean diversity of taxa (species) in the shell bed sample H1–H19 is 11·25 (maximum value 17) whereas the mean diversity for overlying samples H20–H29 is 4·5 (maximum 9).

The composition of faunas above and below the shell beds is essentially similar to that observed in less fossiliferous parts of the Allt Ddu, Glyn Gower and Llaethnant Formations and so could be considered a poorly-developed expression of the Howellites–Paracraniops Association described from the upper part of the Allt Ddu Formation.

In contrast, however, the shell beds containing Heterorthis cf. retrostrisstria (M'Coy) and Sowerbyella sericea permixta Williams, whilst being reminiscent of the Heterorthis 'faunule' (sensu Bassett et al. 1966 : 237), contain Onniella ostentata Williams, Nicolella sp., Orthiscraniina sp., Salopia sp., Dolerorthis sp. and Chasmosps sp., all of which are considered characteristic of the Nicolella–Onniella Association. They are also characterized by significant numbers of Dinorthis and Reuschella and various cephalopod and gastropod species.

Although the relationship between this Heterorthis–Sowerbyella Assemblage and its rare elements is unknown, it is reasonable to assume that a Nicolella–Onniella type of association was established locally in pre-Frondderw times.

Diversity patterns

There are various methods by which relative diversity values D may be calculated. The two methods chosen here are the Margalef method which uses the formula $D = (S - 1)/\log N$ (Margalef 1958) and the Sanders (1968) rarefaction technique which is similarly designed to calculate diversity values for a standard sample size (in this case 50 individuals). Both methods have been applied to palaeoecological studies; for example, Ziegler et al. (1968) used the Margalef index in the modified form $D = S/(\log N)$, and various authors including Calef & Hancock (1974), Antia (1977), Fürsich (1977) and Watkins (1979) have used the Sanders rarefaction techniques.

MacArthur (1965 : 511) stated that the simplest measure of species diversity was a count of number of species. Similar simple definitions of species diversity or species richness given in numerous standard texts, e.g. Krebs (1978 : 374) and Valentine (1973 : 288), usually refer to community diversity but may equally well be applied to the diversity of individual samples.

Since a simple count of species diversity is a prerequisite for the calculation of relative diversity values in a series of samples, the original, size-dependent diversity values are plotted alongside standardized values for comparative purposes (Figs 20, 21).

The two standardizing methods applied here have the effect of smoothing out patterns of excessive fluctuation which are related to sample size; they also serve to emphasize real patterns of variation like the pronounced fluctuations observed in the Rhiw March succession (Fig. 20). Here a moderately diverse association in the lower part of the sampled Allt Ddu succession is succeeded by less fossiliferous strata, with a less diverse fauna, in the uppermost part of the
Fig. 20 Faunal diversity patterns in parts of the Allt Ddu (AD) and Gelli-grin Formations (including the Cymerig (C) and Pont y ceunant (Pyc) Members) at three named localities. A represents species per sample; B represents diversity values standardized to a sample size of 50 individuals using the Sanders (1968, 1969) rarefaction technique; C represents diversity values derived from the Margalef (1958) index.
Fig. 21 Faunal diversity patterns and their relationship to faunal associations.
formation; these beds are in turn succeeded by those of the lower part of Gelli-grin Formation which contain a high-diversity association related to a less argillaceous, calcareous facies. The middle part of the formation, representing a return to more argillaceous deposition, is characterized by a low-diversity association which contrasts with the associations of higher diversity of both the preceding and succeeding beds.

The use of the Sanders rarefaction technique generally involves adherence to a particular, chosen sample size. In this case, the use of diversity values calculated for a sample size of 50 avoids the necessity of calculating diversity values for smaller samples, although this may be done if desired. When used in isolation no such restraints affect the use of the Margalef diversity index which produces size-dependent results; however, size-related variation in diversity values is not excessive in this case where values for \(N \) vary only within a single order of magnitude. In the present study Margalef diversity values were calculated only for samples with at least 20 individuals, except in the southernmost three sections where a few samples associated with the Graptolitic Association are characterized by minimal numbers of specimens. The estimation of the Sanders and the Margalef indices has the primary effect of reducing the numerical value of the original whole-number count of species per sample to non-integral numbers of little more than 50\% of the value of original counts; the latter method results in greater reductions (Fig. 20).

Although the diversity indices used here do not take into account species equitability (or evenness of distribution of species within samples or associations) it is to be expected that low-diversity associations would exhibit less even distributions than high-diversity associations (Pielou 1969 : 233; Krebs 1978 : 456). Such relationships are intuitively evident in the case of the associations discussed here. Although detailed discussions of species equitability are outside the present scope, following the above positive diversity/equitability correlation we may say, for example, that the Sericoidea-dominated association and the two dominated by Howellites have less equitable species distributions than the diverse Nicoella-Onniella Association.

Since the Sanders method is limited to a particular sample size and produces values which fall between those calculated by the other two methods used here (Fig. 20), it was not used in the compilation of Fig. 21. Here, the two most different diversity indices are plotted for all the main thoroughly-sampled sections (other than the Afon Twrch shell bed section) and shown in conjunction with the stratigraphical distribution of named faunal associations. In addition to the parallel patterns resulting from the application of differing methods to the same data, the most striking features of the stratigraphical variation in diversity trends are as follows. Firstly, it is apparent that there is a continual fluctuation in the diversity of sequentially collected samples; this has been noted by Watkins (1979) and can be attributed to a number of possible factors including patchiness of faunal distribution within associations, actual original fluctuations of diversity with time and differences in post-mortem disturbance at successive horizons or variations, including variations in fossilization processes, in the physical environment. The second distinctive pattern pertains to the relationships between faunal associations and diversity trends; Fig. 21 serves as a comprehensive graphic description of inter- and intra-association diversity trends. The relatively high diversity values noted for the Nicoella-Onniella Association from the lower part of Gelli-grin Formation contrast with lower values noted for both the underlying and overlying associations and indicate that the variation in trends is directly related to original differences in the composition of these associations. Therefore, although short-term fluctuations cannot be unequivocally explained, longer-term variations can be accounted for to some degree.

Relationships between density and diversity

In lower parts of the succession it was found difficult to derive a statistically-valid sample (e.g. 50 individuals) from sparsely fossiliferous rock. For this reason tests were devised to establish whether low diversity values were an actual phenomenon or the product of small numbers of individuals in a sample (i.e. low density). Since high- and low-density samples often show similar patterns of taxonomic composition significant increases in diversity would probably not result from corresponding increases in sample size.

Two large collections, H29 (10 kg) and H26 (8 kg), from the sparsely fossiliferous lower Allt-Ddu Mudstones of the Afon Twrch section were chosen for testing. Each sample was divided into
2 kg 'sub-samples' of rock and the total fauna from each was broken out and identified separately. A consistent number of taxa was derived from each of these sub-samples and the cumulative number of taxa was found to increase only gradually as the data from each sub-sample were pooled (Fig. 22). A χ^2 test revealed that there is no significant difference between the taxonomic diversity in a small (2 kg) sample and a larger (8–10 kg) one; for H29 $98% > P > 95%$ and for H26 $95% > P > 90%$. This implies a positive relationship between low density and low diversity.

Further evidence of such a relationship results from the analysis of a series of samples from contrasting facies (Fig. 22). Eight samples collected through 16 m of strata and across a facies boundary all show a positive correlation between density and diversity (χ^2, $50% > P > 20%$). Conditions favourable for increased diversity therefore favour increased numbers of individuals; conversely, factors limiting diversity tend also to limit numbers.

Such positive density–diversity correlations as those noted here are by no means universally evident; many authors have sought to demonstrate an inverse relationship between the two parameters. For example, Calef & Hancock (1974 : 779) and Hancock et al. (1974 : 151) referred to a negative correlation between density and diversity in their respective analyses of Silurian benthic communities.

Valentine (1972 : 195) stated that there was no single, well-verified theory of diversity regulation. Many environmental factors, including temperature, temperature stability, depth, salinity, current activity and substrate composition affect the diversity and density of benthic associations. The present author, like many workers, avoids considering any single factor in isolation and tends to favour unifying theories such as the 'stability-time hypothesis' (Sanders 1969).
Taxonomic descriptions

The main aim of this section is to describe and figure genera and species hitherto unknown in the Lower Bala Group. Amongst these are representatives of the trilobite genera *Cyphoproetus*, *Lonchodomas*, *Phillipsinella* and *Sphaerocoryphe*. Species of the brachiopod genera *Bimuria* and *Protozyga* are recorded in Wales for the first time. Excluding *Cyphoproetus*, the above-mentioned genera are from the Gelli-grfn Formation (at Rhiw March) and current evidence suggests that their distribution elsewhere is very restricted. Representatives of the brachiopod families Obolidae and Paterulidae, together with species of the genera *Orthisocrania*, *Paracraniops*, *Palaeostrophomena*, *Anisopleurella*, *Sericoidea* and *Cyclospira*, are described and figured. Although species belonging to some of these taxa are already known from the Lower Bala Group, those described here are either new species, species new to the area or well-preserved specimens of previously poorly-represented species. New representatives of the Lingulacea recovered during the present study are given only a generic classification because they cannot be assigned with confidence to any more specific taxonomic grouping owing to their lack of internal morphological features. This precludes lengthy discussion of diagnostic features, so only brief descriptions accompany certain plates.

Dr P. J. Brenchley has recovered several specimens of the brachiopod genus *Parastrophinella* from the Caradoc Bryn Beds of the NE Berwyns. Since this genus was hitherto unknown in the Caradoc of north Wales, and has only been recorded in the Caradoc of Salop and south Wales (Williams 1974, Addison 1974), the Berwyn material is best described in conjunction with new material from the Lower Bala Group.

Representatives of the Mollusca (6 genera) and the Echinodermata (2 species) are also figured. Measurements for most of the material are included; however, values in brackets refer to variably distorted specimens and should therefore be regarded only as approximate estimates of original size.

Further information on those brachiopod species (and related forms) not fully described here may be found in Williams (1963) and Hurst (1979); similarly for information on the Trilobita see Whittington (1962–68).

Phylum BRACHIOPODA Dumeril, 1806
Class INARTICULATA Huxley, 1869
Order LINGULIDA Waagen, 1885
Superfamily LINGULACEA Menke, 1828
Family OBOLIDAE King, 1846
Subfamily LINGUELLINAE Schuchert, 1893
Genus LINGULELLA Salter, 1866

? Lingulella sp.

Fig. 24

Description. Suboval, convex specimen of exfoliated *Lingulella*, with pedicle valve 80% as wide as long and an acute beak (< 90°); ornamented with concentrically-arranged growth lines numbering at least four per mm at 3 mm anterior of the umbo, with fine fila between growth lines.

Material and locality. Complementary internal and external parts (BB92200a, b) of exfoliated pedicle valve (length 8 mm, width 6.5 mm, depth at umbo 0.7 mm) from fossiliferous shales at Pont Aber Derfel (SH 850395), the type locality for the Derfel Limestone.

Discussion. This is the first record of a genus belonging to the Inarticulata in this oldest member of the Lower Bala Group.
Lingulella cf. ovata (M’Coy, 1846)
Fig. 25

Description. Suboval, convex specimen of a pedicle valve 70% as wide as long and with an acute beak (<90°). Ornamented with fine concentric growth lines seen only at anterior commissure (spacing 0.3 mm).

Material and Locality. Complementary internal and external parts (BB92201a, b) of exfoliated pedicle valve from bed R36 in the Gelli-grin Formation at Rhiw March.

Genus PALAEOGLOSSA Cockerell, 1911 (emend. Williams 1974)
Palaeoglossa cf. attenuata (J. de C. Sowerby, 1839)
Figs 26, 27

Description. Subtriangular convex pedicle valve 65% as wide as long with an acute beak (60° ± 5°), ornamented with strong concentric growth lines (2 per mm) in addition to fine fila.

Material and Locality. Measurements in mm.

<table>
<thead>
<tr>
<th></th>
<th>length</th>
<th>width</th>
<th>depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>External mould of conjoined valves (BB92202) from bed GG1d</td>
<td>14</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td>Internal and external part of an exfoliated pedicle valve (BB92203a, b) from bed R52</td>
<td>.</td>
<td>.</td>
<td>10</td>
</tr>
</tbody>
</table>

Discussion. *P. cf. attenuata* is recorded here in the Lower Bala Group for the first time.

Subfamily GLOSSELLINAE Cooper, 1956
Genus PSEUDOLINGULA Mickwitz, 1909 (emend. Williams 1974)
Pseudolingula sp.
Fig. 28

Description. Parallel-sided, convex glossellinid 42% as wide as long with an acute beak (<90°) and ornamented with (poorly preserved) growth lines.

Material and Locality. An external mould of a brachial valve (BB92204), length 24 mm, width 10 mm, was recovered from bed GG1b in the Gelli-grin Formation.

Discussion. *Pseudolingula* is recorded here in the Lower Bala Group for the first time.

Family PATERULIDAE Cooper, 1956
Genus PATERULA Barrande, 1879
Paterula sp.
Figs 29a, b, 30

Description. Smooth oval *Paterula* with rounded posterior and anterior margins. 76–84% as wide as long, beak poorly defined. Well-developed marginal limbus.

Material and Locality. Single specimens of the external and internal moulds of convex pedicle (?) valves (BB92205, BB92206) respectively from beds R52 and R53 in the Cymerig Limestone at Rhiw March.

Discussion. *Paterula* is recorded here in the Lower Bala Group for the first time.

Family CRANIOPSIDAE Williams, 1963
Genus PARACRANIOPS Williams, 1963
Paracraniops cf. macellus Williams, 1963
Figs 32a, b

Description. Elongately oval and subequivalve *Paracraniops*, with flattened posterior margin
and strong concentric ornamentation consisting of 7–8 irregularly-spaced growth lines per mm on the anterior part of valve.

Material and locality. Five well-preserved external moulds were obtained from beds GG2c (BB92208), R29 (BB92263), R46 (BB92464) and R47 (two specimens) in the Gelli-grin Formation.

Discussion. Williams (1963: 347–348) discussed the problems of differentiating between pedicle and brachial valves belonging to this genus and revised his earlier diagnosis (1962: 88–89) of which valve was which, concluding that the pedicle valve bears the shield-shaped muscle scars while the brachial valve bears posterior adductor and oblique scars extending anterolaterally for about a quarter of the valve length. Mitchell (1977: 22–23) apparently ignored Williams’ later proposals, preferring to adhere to his earlier definitions. However, the more recently proposed orientation is adhered to here and it is noted that P. glaber sp. nov. has distinctive posterior adductor (?) scars (Figs 33–36).

When describing P. macellus1 (Williams 1963: 348; pl. 1), insufficient material was available to illustrate the external morphology adequately and the reader was referred to descriptions of P. pararius Williams (1962), emend. Williams (1963) for additional information. Material obtained during this study shows the close resemblance between the exterior morphology of P. cf. macellus and P. pararius.

Paracraniops glaber sp. nov.

Figs 33–36

Diagnosis. Large, externally smooth, oval, dorsibiconvex (?) *Paracraniops* with well-developed limbus, slightly convex to asymmetrically conical dorsal (?) valve and slightly convex ventral (?) valve.

Name. ‘Smooth’.

Description. Oval *Paracraniops* 66–84% as wide as long in populations with smaller and larger mean size respectively. Dorsal (?) valve with pair of variably-developed faint posterior adductor scars (?) arising anterior to the posterior margin (10% of valve length) and extending for 20–30% of valve length, only known in large specimens (Figs 33, 34). External ornament smooth except for well-developed marginal limbus. (Rare development of concentric growth lines seen on some internal moulds.)

Type material. Measurements in mm.

<table>
<thead>
<tr>
<th>Type material.</th>
<th>Measurements</th>
<th>length</th>
<th>width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holotype, internal mould of brachial (?) valve, BB92209</td>
<td>.</td>
<td>5·5</td>
<td>4·8</td>
</tr>
<tr>
<td>Paratype, internal mould of pedicle (?) valve, BB92210</td>
<td>.</td>
<td>5·0</td>
<td>4·2</td>
</tr>
<tr>
<td>Paratype, internal mould of brachial (?) valve, BB92211</td>
<td>.</td>
<td>(4·5)</td>
<td>(4·1)</td>
</tr>
<tr>
<td>Paratype, internal mould of brachial (?) valve, BB92212</td>
<td>.</td>
<td>3·4</td>
<td>3·0</td>
</tr>
</tbody>
</table>

Type horizon and localities. Fig. 23 gives biometric parameters of specimens of *P. glaber* sp. nov. from sample loc. 55 near Fedw Farm (9089 2975) and from the Rhiw March section (Fig. 9, p. 180). The former locality, on the south side of Nant Rhyd Wen (opposite the cliffs of Craig y Gath), is the ‘alternative’ type locality for the Allt Ddu Formation (p. 178). Fig. 45A, p. 208, gives statistics of two small populations of *P. glaber* from beds R093 and R096 in the Rhiw March section.

Discussion. The morphology of most of the specimens belonging to this common Allt Ddu species is so featureless that previous studies have disregarded them owing to uncertainty about their taxonomic affinity (Williams, personal communication 1976). However, a fortuitous discovery of a small population of well-preserved, large *Paracraniops* specimens in a partially decalcified calcareous nodule has revealed that a few of these normally featureless valves have internal muscle scars preserved. The internal morphology of the dorsal (?) valve closely resembles

1 Called by Williams *P. macella*; however, a ruling of the I.C.Z.N. (1974, *Bull. zool. Nom.*, London, 31: 81–83) is that generic names in -ops shall be regarded as masculine in all cases.
that of P. pararius Williams, but the lack of external ornament on P. glaber distinguishes it from other related forms at least at the specific level. P. glaber appeared much earlier in the Lower Bala Group than the related form P. macellus Williams, which is only known from the Gelli-grin Formation.

The mean length/width ratio of P. glaber varies allometrically with growth. Specimens from loc. 55 apparently grew to a relatively large size, increasing in width relative to length.

Fig. 23 Biometric parameters (length and width) of Paracraniops glaber sp. nov. A, specimens from sample 55 including two showing dorsal (?) muscle scars. B and C respectively represent specimens from samples R096 and R093; corresponding size frequency histograms are also shown.

Paracraniops cf. *glaber* Lockley, herein

Fig. 37

Material and Locality. A single slightly distorted internal and external mould (BB92213a, b) of a specimen apparently conspecific with *P. glaber* recovered from bed H6 (9001 2305) is figured. The dorsal (?) posterior adductor scars and well-developed internal growth lines are seen. (Length of specimen 4-6 mm, width 3-1 mm.)

Suborder CRANIIDINA Waagen, 1885
Superfamily CRANIACEA Menke, 1828
Family CRANIIDAE Menke, 1828

Genus ORTHISOCRANIA Rowell, 1965

Orthisocrania sp.

Figs 31a, b

Description. Subcircular, convex brachial valve with elliptical anterior adductor scars.

Material and Locality. Single internal mould of deformed brachial valve (BB92207) from bed H8 in Afon Twrch (9001 2305); see Fig. 4, p. 176.

Discussion. This is the first record of *Orthisocrania* from beds below the Gelli-grin Formation. This Soudleyan occurrence, the earliest known in Britain, was predicted by Wright (1970: 102).

Class ARTICULATA Huxley, 1869

Introduction. Systematic descriptions of members of this class are given for representatives of the Orders Strophomenida, Pentamerida and Spiriferida only. Although representatives of seven species in the Order Orthida are figured, they are all considered to be conspecific with those
described by Williams (1963); they are included in order to illustrate well-preserved morphological features and, in the case of Nicolella cf. actoniae obesa, Onniella ostentata and Salopia sp., represent early occurrences of species previously known only from the Gelli-grin Formation.

Order ORTHIDA Schuchert & Cooper, 1932
Superfamily ORTHACEA Woodward, 1852
Family ORTHIDAE Woodward, 1852
Subfamily PRODUCTORTHINAE Schuchert & Cooper, 1931

Genus NICOLELLA Reed, 1917

Nicolella cf. actoniae obesa Williams, 1963
Fig. 38

Material, Locality and Discussion. A single undistorted pedicle valve external mould (BB92215), length 6·0 mm, width 8·5 mm, depth 1·2 mm, was recovered from bed H6; two distorted brachial valves were also found (beds H6 and H40, BB92214). Only the pedicle valve specimen is figured. This is the earliest record of this species in the Lower Bala Group.
A

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>I. mm(var.1)</td>
<td>2.827(0.522)</td>
<td>3.628(0.728)</td>
</tr>
<tr>
<td>w. mm(var.w)</td>
<td>1.882(0.232)</td>
<td>2.443(0.359)</td>
</tr>
<tr>
<td>r</td>
<td>0.5996</td>
<td>0.8347</td>
</tr>
<tr>
<td>a(var.a)</td>
<td>0.666(0.032)</td>
<td>0.709(0.013)</td>
</tr>
<tr>
<td>lg_e I(var.1g_e)</td>
<td>1.007(0.063)</td>
<td>1.262(0.054)</td>
</tr>
<tr>
<td>lg_e w(var.1g_e)</td>
<td>0.600(0.063)</td>
<td>0.864(0.058)</td>
</tr>
<tr>
<td>r_e</td>
<td>0.607</td>
<td>0.838</td>
</tr>
<tr>
<td>α(var.α)</td>
<td>1.000(0.70)</td>
<td>1.042(0.269)</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Locality</th>
<th>R 47</th>
<th>R 48</th>
<th>R 52</th>
<th>R 53</th>
<th>R 47</th>
<th>R 48</th>
<th>R 52</th>
<th>R 53</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>38</td>
<td>54</td>
<td>59</td>
<td>48</td>
<td>32</td>
<td>29</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>I. mm(var.1)</td>
<td>2.54(0.289)</td>
<td>2.70(0.343)</td>
<td>2.47(0.468)</td>
<td>2.63(0.440)</td>
<td>2.38(0.273)</td>
<td>2.80(0.369)</td>
<td>2.26(0.395)</td>
<td>2.19(0.301)</td>
</tr>
<tr>
<td>w. mm(var.w)</td>
<td>4.61(0.905)</td>
<td>5.06(1.866)</td>
<td>4.44(1.837)</td>
<td>4.95(2.157)</td>
<td>4.72(1.227)</td>
<td>5.04(1.501)</td>
<td>3.93(1.542)</td>
<td>4.61(1.357)</td>
</tr>
<tr>
<td>r</td>
<td>0.7429</td>
<td>0.8558</td>
<td>0.8341</td>
<td>0.8496</td>
<td>0.7395</td>
<td>0.8911</td>
<td>0.8242</td>
<td>0.9590</td>
</tr>
<tr>
<td>lg_e I(var.1g_e)</td>
<td>0.91(0.044)</td>
<td>0.97(0.046)</td>
<td>0.869(0.074)</td>
<td>0.936(0.062)</td>
<td>0.84(0.047)</td>
<td>1.01(0.046)</td>
<td>0.78(0.075)</td>
<td>0.75(0.061)</td>
</tr>
<tr>
<td>lg_e w(var.1g_e)</td>
<td>1.51(0.042)</td>
<td>1.587(0.070)</td>
<td>1.447(0.089)</td>
<td>1.549(0.085)</td>
<td>1.53(0.054)</td>
<td>1.59(0.058)</td>
<td>1.33(0.084)</td>
<td>1.50(0.062)</td>
</tr>
<tr>
<td>r_e</td>
<td>0.7470</td>
<td>0.8402</td>
<td>0.8397</td>
<td>0.8496</td>
<td>0.7444</td>
<td>0.8937</td>
<td>0.8299</td>
<td>0.9569</td>
</tr>
<tr>
<td>α(var.α)</td>
<td>0.975(0.012)</td>
<td>1.239(0.008)</td>
<td>1.099(0.006)</td>
<td>1.177(0.008)</td>
<td>1.07(0.017)</td>
<td>1.12(0.009)</td>
<td>1.06(0.027)</td>
<td>1.01(0.010)</td>
</tr>
</tbody>
</table>

C

| Statistics of length (l) and maximum width (w) for Paracranios glaber sp. nov. from horizons RO96 (A) and RO93 (B) in the Allt Ddu Mudstone at Rhiw March.
Statistics of length (l) and width (w) of pedicle valves of Sericoidea abdita complicata subsp. nov. from four horizons (A-D) in the Nod Glas; (E-H) statistics of brachial valves from same samples.
Statistics of length (l) and width (w) of pedicle (A) and brachial (B) valves of Cyclospira aff. bisulcata (Emmons) from the Cymerig Limestone and associated beds in the Tan y Bwlch and Rhiw March sections. |

Fig. 45 Statistics for: A, *Paracranios glaber* sp. nov. B, *Sericoidea abdita complicata* subsp. nov. C, *Cyclospira aff. bisulcata* (Emmons).
Family **PLECTORTHIDAE** Schuchert & Le Vene, 1929

Genus **RHACTORTHIS** Williams, 1963

Rhactorthis crassa Williams, 1963

Fig. 39

Material, locality and discussion. Well-preserved, complementary internal and external moulds of a brachial valve (BB92216a, b) from bed R49 in the Rhiw March section; its length is 5·1 mm, width 7·0 mm.

Superfamily **ENTELETACEA** Waagen, 1884

Family **DALMANELLIDAE** Schuchert, 1913

Genus **HOWELLITES** Bancroft, 1945

Fig. 40

Material, locality and discussion. A group of at least seven articulated *Howellites* valves (BB92217) from bed R089 show attachment to an elongate strand of unknown material. The illustration of this specimen supplements descriptions of *Howellites* ‘life assemblages’ from the Berwyn area (Brenchley 1966).

Howellites cf. *antiquior* (M’Coy, 1852)

Fig. 41

Material, locality and discussion. A well-preserved internal and external mould of a brachial valve (BB92218a, b), length 5·6 mm, width 7·0 mm, showing characteristic muscle scars, was recovered from bed AB07, associated with the Cowarch Phosphate Bed at Aber Cowarch.

Genus **ONNIELLA** Bancroft, 1928

Onniella ostentata Williams, 1963

Figs 42, 43

Figured material. Representative internal moulds of a pedicle (BB92219) and a brachial valve (BB92220a) are shown.

Horizon, locality and discussion. Several populations of *O. ostentata* were recovered from beds H4–H7 and H38–H40 in Afon Twrch. The H4 population was compared with a population from bed GG1b at Gelli-grin (type locality); no significant differences could be observed in the three allometrically controlled morphological features that were tested, the outline of the pedicle valve (P > 10%), the outline of the brachial valve (P > 10%) and the shape of the cardinalia (10% > P > 5%). (For statistics see Lockley 1977 : fig. 12.2). For a full description of this species see Williams (1963 : 405); it is discussed here to draw attention to its early appearance in pre-Frondderw beds.

Genus **BANCROFTINA** Sinclair, 1946

Bancroftina sp.

Figs 46a, b

Material, locality and discussion. A well-preserved internal mould of a *Bancroftina* brachial valve (BB92221, length 13 mm, width 18 mm; cardinalia length 2·5 mm, width 5·5 mm) was recovered from bed GG1h above the Cymerig Limestone. This form is poorly represented in the Lower Bala Group.
Family LINOPORELLIDAE Schuchert & Cooper, 1931
Genus SALOPIA Williams, 1955
Saloquia sp.
Fig. 44

Material, locality and discussion. This internal mould of a brachial valve (BB92222), from bed H6 below the Frondderw Ash, is one of several found in association with species which make an early appearance in the Lower Bala Group at about this horizon.

Suborder TRIPLESIIDINA Moore, 1952
Superfamily TRIPLECIACEA Schuchert, 1913
Family TRIPLECIIDAE Schuchert, 1913
Genus TRIPLESIA Hall, 1959

Triplesia maccoyana Davidson, 1869, emended
1852 Hemithyris depressa (J. de C. Sowerby); M'Coy in Sedgwick & M'Coy: 201.
1869 Triplesia ? Maccoyana Davidson: 199; pl. 24, fig. 29.

Description. Small dorsibiconvex, globular, plicate Triplesia with pedicle valve averaging 96% as long as wide in 5 specimens (range 80–108%) and 22% as deep as long in 4 specimens (range 15–27%); dorsal valve averaging 87% as long as wide in 13 specimens and 45% as deep as long in 12 specimens; ventral sulcus and corresponding dorsal fold arising between the 2 and 3 mm growth stages and averaging 62% as wide (wavelength) as valve (range 56–67%) and 30% as high (amplitude) as wavelength (range 21–40%) at the commissure of 4 smaller valves between 3·6 and 5·0 mm in width, deepening to respective average width: wavelength and amplitude: wavelength ratios of 59% (range 55–63%) and 44% (range 39–47%) at the commissure of 4 larger valves between 5·5 and 7·2 mm in width; ventral umbo pointed, overhanging incurved dorsal umbo and with short narrow curved apscine interarea divided by elongate pedicle groove; surface smooth except for fine concentric growth lines numbering about 10 per mm beyond the 3 mm growth stage. Interior of both valves unknown.

Material and locality. Lectotype (selected Cocks 1978: 86) articulated valves (SMA.42436, length 5·6 mm, width 7·0 mm, and 19 other paralectotypes (SMA.42437–48) from a limestone lens in the Allt Ddu Mudstones, Bryn Bedog Quarry, near Bala, Gwynedd (grid. ref. SH 931329).

Discussion. The species is known only from M'Coy's original material and its importance as an element of the Lower Bala Group fauna is difficult to evaluate. It is, however, the first Triplesia species recorded in the Ordovician of north Wales; Williams (1974) recorded a contemporary Triplesia sp. from the Soudleyan of Salop. There is also an earlier species, Triplesia edgelliana (Davidson), from the Upper Llanvirn of the Llandeilo area (Lockley & Williams, in press); T. maccoyana compares most closely with this, differing only in respect of its significantly deeper dorsal valve (0·05 < P < 0·02). Relevant statistics for the dorsal valve length (l), width (w) and depth (th) are as follows: (n = 13) l mm (var. 1) 5·14 (1·273), w mm (var. w) 5·91 (2·185), r = 0·9077, a (var. a) 1·3103 (0·0275); (n = 12) l mm (var. 1) 5·32 (0·938), th (var. th) 2·42 (0·552), r = 0·8066, a (var. a) 0·7675 (0·0206).

Order STROPHOMENIDA Opik, 1934
Superfamily PLECTAMBONITACEA Jones, 1928
Family LEPTESTIDAE Opik, 1933
Subfamily LEPTESTINAE Opik, 1933
Genus PALAEOSTROPHOMENA Holtedahl, 1916

Palaeostrophomena canalis sp. nov.
Figs 47a, b, 48–52

Diagnosis. Subquadrate, gently biconvex to biplanate Palaeostrophomena with pedicle valve
characterized by well-developed mantle canal system arising anteromedially and restriction of genital markings to posterolateral part of valve.

NAME. With reference to the mantle canal system.

DESCRIPTION. Pedicle valve 85–90% as long as wide with interior characterized by elongate, narrow, divergent diductor scars flanking narrow, small anterior median adductor scars. Musculature otherwise poorly defined and intricately related to well-defined mantle canal system.

Interarea long apsacine, dental lamellae absent, but divergent false dental plates present. Narrow delthyrium open medially but covered laterally by pseudodeltidium. Up to 12 mantle canals branching radially into at least 30 tributary canals at the commissure. At least seven concentric rugae (wavelength 0·2 mm) developed posterolaterally at an acute angle to the hinge. Ornament very fine, unequally parvicostellate; at least seven ribs arise in umbonal area defining sectors bisected by ribs arising 3–4 mm from umbo, and these in turn define sectors bisected by ribs arising 5–6 mm from umbo. Brachial valve unknown.

TYPE MATERIAL. Measurements in mm.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holotype</td>
<td>internal mould of pedicle valve, BB92223</td>
<td>15</td>
<td>16·5</td>
</tr>
<tr>
<td>Paratype</td>
<td>internal mould of pedicle valve, BB92224</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Paratype</td>
<td>internal mould of pedicle valve, BB92225</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Paratype</td>
<td>internal mould of pedicle valve, BB92226</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Paratype</td>
<td>internal mould of pedicle valve, BB92227</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Paratype</td>
<td>external mould of pedicle valve, BB92228</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

TYPE HORIZON AND LOCALITIES. Holotype from sample GG1b in the Gelli-grin type section; paratypes from samples R27 and R28 in the Rhiw March section.

DISCUSSION. This species is quite distinct from *P. magnifica* Williams, which is known from the Derfel Limestone. The lack of well-developed genital markings and the closely-spaced mantle canals are its most distinctive features. Cooper (1956: 703) noted the complete absence of well-preserved brachial valves in a large population of *P. angulata* and attributed this to their fragility. Although similar absence of brachial valves of *P. canalis* is noted here, explanations are not proposed.

Family SOWERBYELLIDAE Öpik, 1930

Subfamily SOWERBYELLINAE Öpik, 1930

Genus ANISOPLEURELLA Cooper, 1956

Anisopleurella cf. multisepata (Williams, 1955)

Fig. 53

DISCUSSION. A well-preserved specimen of a pedicle valve internal mould (BB92229) from bed GG2b represents the first record of *Anisopleurella* in the Gelli-grin Formation. The large, paired diductor scars are well displayed and the fragmentary remains of external moulds which were also recovered reveal the essentially smooth exterior of the shell which is ornamented only by widely-spaced primary costae. The specimen compares closely with *A. multisepata* Williams from the Derfel Limestone (Williams in Whittington & Williams 1955: 416).

Subfamily AEGIROMENINAE Havliček, 1961

Genus SERICOIDEA Lindström, 1953

Sericoida abdita Williams, 1955, emend. herein

DIAGNOSIS. *Sericoida* with variable arrangement of paired or single strong lateral septules and a well-defined median septum all extending into the anterior half of the valve; dorsal muscle platform bilobed.
Sericoidea abdita complicata subsp. nov.

Figs 54–59

Diagnosis. Differs only from the nominate subspecies in the variable development of septules and the presence of dorsal muscle scars.

Name. ‘Complicated’.

Description. Semicircular, planoconvex *Sericoidea* with mean length/width ratio of 54·4% and 52·7% for pedicle (N=199) and brachial (N=91) valves respectively. Ornamentation consisting of fine, differentially thickened, radial costae and costellae with a mean of 12·4 per mm (N=56) found anteromedially. Dorsal septules arranged in arcs over two-thirds of the length of the brachial valve anterior of the umbo. Septules are generally but not invariably arranged in arcuate, single or double rows, or both, on either side of the median septum. The mean number of septules per row (as counted for the longest row) is 5·8 (N=25). Dorsal adductor scar bilobed, extending anteriorly for less than half the length of the valve and laterally for over one-third the width of the valve.

Type Material. Measurements in mm.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>length</th>
<th>width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holotype</td>
<td>Internal mould of brachial valve, BB92231</td>
<td>5·0</td>
<td>2·8</td>
</tr>
<tr>
<td>Paratype</td>
<td>Internal mould of brachial valve, BB92230</td>
<td>5·3</td>
<td>3·5</td>
</tr>
<tr>
<td>Paratype</td>
<td>Exterior of pedicle valve, BB92232</td>
<td>4·6</td>
<td>3·0</td>
</tr>
<tr>
<td>Paratype</td>
<td>Internal mould of brachial valve, BB92233</td>
<td>5·0</td>
<td>3·2</td>
</tr>
<tr>
<td>Paratype</td>
<td>Internal mould of brachial valve, BB92234</td>
<td>7·0</td>
<td>4·0</td>
</tr>
</tbody>
</table>

Type Horizon and Locality. Nod Glas Formation, Rhiw March: holotype from bed R47 and paratypes from beds R52 and R53.

Discussion. The genus *Sericoidea* is abundantly represented in the Nod Glas. The largest populations were recovered from beds R47, R48, R52 and R53; full statistical details are given in Fig. 45B. Estimates of α, the growth ratio for samples affected by allometry, have been derived from the data in Fig. 45B and tests show that none of the populations differs significantly from any other ($P>0·1$). Furthermore, they do not differ significantly from *S. restricta* from the Sulârp Shale and from *S. aff. restricta* from the Craighead Limestone; nor do they differ significantly from *S. aff. abdita* from the Balclatchie Mudstones either at Laggan Burn or Byne Hill ($P>0·1$, for all tests). Even when using growth ratios not corrected for allometry, no significant difference

Fig. 46a, b *Bancroftina* sp. (p. 209). Gelli-grin Formation, Gelli-grin Farm, Bala. BB92221. Internal mould and latex cast of a brachial valve, both $\times 2·5$.

Fig. 47–52 *Paleocestophena canalis* sp. nov. (p. 210). Gelli-grin Formation. Figs 47a, b, Gelli-grin Farm, Bala. Holotype, BB92223. Internal mould and latex cast of a pedicle valve, $\times 2·5$. Figs 48–52, Rhiw March, near Llanymajawdwy. Figs 48–50, Paratypes, BB92226, BB92225, BB92227. Internal moulds of pedicle valves, all $\times 2$. Fig. 51, Paratype, BB92224. Internal mould of a pedicle valve, $\times 2·5$. Fig. 52, Paratype, BB92228. External mould of a pedicle valve, $\times 2·5$.

Fig. 53 *Anisopleurella cf. multisepta* (Williams) (p. 211). Gelli-grin Formation, Maes-Meilion, near Llangower. BB92229. Internal mould of a pedicle valve, $\times 2·5$.

Fig. 54–59 *Sericoidea abdita complicata* subsp. nov. (above). Nod Glas Formation, Rhiw March, Llanymajawdwy. Figs 54, Holotype, BB92231. Internal mould of a brachial valve, $\times 7·5$. Figs 55–57, Paratypes, BB92230, BB92235, BB92234. Internal moulds of brachial valves, $\times 12$, $\times 6$ and $\times 7·5$ respectively. Figs 58–59, Paratypes, BB92233, BB92232. Exteriors of pedicle valves, both $\times 6$.

Fig. 60–62 *Bimuria dyfiensis* sp. nov. (p. 215). Gelli-grin Formation, Rhiw March, near Llanymajawdwy. Figs 60–61, internal moulds of pedicle valves, $\times 2·5$. Fig. 60, Holotype, BB92237. Fig. 61, Paratype, BB92239a. Figs 62a, b, Paratype, BB92238a. Posterior and lateral views of a pedicle valve, both $\times 2·5$. See also Figs 64–65.
can be detected between *S. abdita complicata* and *Chonetoidea radiatula* (Barrande) from the Ashgill of Pomeroy (*P* > 0.1). This evidence highlights the similarity in the shape of these related aegirofeninids.

Williams (1963 : 188–190) measured the frequency of costellae per mm at the anteromedian margins of *Sericoidea abdita complicata* and found that *S. aff. abdita* from the Balclatchie Mudstones was significantly different from *S. aff. restricta* from the Craighead Limestone. In this study similar measurements on the frequency of costellae at the anteromedian margin in *S. abdita complicata* were compared with measurements obtained for *S. aff. abdita*, using a χ^2 test with cell groupings identical to those used by Williams (1963 : 189). No significant difference was detected between the two populations ($0.2 > P > 0.1$); the data are given in Fig. 63.

However, a comparison between the different types of septule arrangement in *S. aff. abdita* and *S. abdita complicata* reveals that the latter subspecies was significantly different (χ^2 test, $P < 0.001$) in having longer rows of single and paired septules of comparable size; see Fig. 63.
Since there is a high degree of variability in the disposition of septules in the *S. abdita complicata* population the differences are considered subspecific.

Although attempts have been made by Williams (1962) and the author to define *Sericoidea* populations quantitatively, a certain element of qualitative judgement attaches to whether smaller or larger septules are considered important as representatives of well-defined or less well-defined rows. According to Williams (1962 : table 46) septule rows never contain more than three septules (either in *S. restricta* or in *S. aff. abdita*). Similarly, *S. abdita* was diagnosed as having 'up to three pairs of strong lateral septules' (Williams in Whittington & Williams 1955 : 418). However, whilst acknowledging that palaeontologists might differ as to what constitutes a septule rather than a tubercle (the specimens in Williams 1974 : pl. 24, figs 8, 9 and Williams 1962 : pl. 18, fig. 8 might for example be considered to display at least four septules in each lateral row) the differences between *S. cf. abdita*, *S. aff. abdita* and *S. abdita complicata* are considered significant because all measurements and counts of morphological features were estimated in the same way.

Family BIMURIDAE Cooper, 1956
Genus BIMURIA Ulrich & Cooper, 1942
Bimuria dyfiensis sp. nov.
Figs 60, 61, 62a, b, 64a, b, 65

Diagnosis. Concavo-convex, small, slightly sulcate *Bimuria* with pedicle valve umbo strongly incurved and overlapping dorsal interarea, teeth simple.

Name. From the Dyfi river.

Description. The pedicle valve interior morphology is well defined. Variably developed, narrow, divergent diductor scars extend anterolaterally for approximately three-quarters of the length of the valve, enclosing less well defined, radial adductor and mantle canal impressions posteriomedially. Simple teeth developed laterally for about one-third of the width of the valve but short anteromedially. Slight development of pedicle valve sulcus evident from broad indentation of anterior commissure.

Brachial valve interior unknown; exterior essentially smooth in the only known specimen. Ventral exterior poorly known, essentially smooth, comae absent or very indistinct, resembling faint concentric growth lines where present.

Type material, horizon and locality. Holotype, internal mould of pedicle valve (BB92237) from bed R28 (length 12 mm, width 16 mm). Paratypes, internal and external moulds of pedicle valves (BB92238a, b–BB92241a, b) and internal moulds of pedicle valves (BB92242 and BB92243) and a brachial valve (BB92244), all from bed R28.

The above specimens, all from bed R28 in the Gelli-grin Formation at Rhiw March, are distorted so that measurements are inaccurate; but the mean size of this population was clearly small, only two specimens being slightly wider than 12 mm.

Discussion. The morphological features described above suggest that this species cannot be assigned to any of the Scoto-Irish species (*B. cf. buttsi* Cooper, *B. youngiana* Davidson, *B. youngiana recta* Williams and *B. cf. youngiana recta*). The Welsh specimens apparently belonged to a population with a smaller mean size than the two former Scoto-Irish species populations (and the latter subspecies population). More significantly, however, the lack of any comae or other distinctive concentric ornamentation must be regarded as an important morphological difference. This lack of ornamentation is not simply the result of the small size of the Welsh specimens; Williams (1962 : 174–175) reported comae originating at 4–6 mm from the ventral umbo in all three of the Scottish species he described. Although the length of the Welsh specimens is not determined precisely, if one can assume, following Williams (1962) and Mitchell (1977), that *Bimuria* is at least two-thirds to three-quarters as long as wide, then all the Welsh specimens must be 6 mm or more in length. *B. dyfiensis* represents the first known occurrence of the genus *Bimuria* in Wales; since it is morphologically distinct, in respect of its essentially smooth external ornament, from all other known species in Britain, it is given specific recognition.
Order PENTAMERIDA Schuchert & Cooper, 1931
Suborder SYNTROPHIIDINA Ulrich & Cooper, 1936
Superfamily PORAMBONITACEA Davidson, 1853
Family PARASTROPHINIDAE Ulrich & Cooper, 1938

Genus PARASTROPHINELLA Schuchert & Cooper, 1931
Parastrophinella brenchleyi sp. nov.
Figs 66–69

Diagnosis. Large, subpentagonal, biconvex Parastrophinella with vestigial fold and sulcus and commonly 12 costae, with a wavelength of 1·0–1·5 mm, ornamenting anteromedian part of the shell.

Name. For Dr P. J. Brenchley.

Description. Unequally biconvex, rostrate Parastrophinella with a subpentagonal outline. 80% as long as wide with pedicle valve about 30% as deep as long. Transverse profile convex with steep lateral slopes; longitudinal profile unevenly convex to anteriorly geniculate in larger specimens. Faintly and sporadically developed low dorsal fold with at least 4 costae and shallow ventral sulcus with 3 costae. Twelve variably developed ventral costae are characteristically angular and well developed anteromedially (being 1·0–1·5 mm in width and amplitude) but are rounded and indistinct posterolaterally. Variably developed concentric corrugations up to 4 per mm anteromedially and anterolaterally are faint or absent in posteromedian part of shell. Ventral interior with spondylion which is sessile posteriorly but supported anteriorly by sporadically developed medium septum extending forward for an average of 49% of the length of three pedicle valves. Muscle scars very faint or absent. Dorsal interior unknown.

Type material. Measurements in mm.

<table>
<thead>
<tr>
<th>Pedicle Valve</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holotype</td>
<td>10·0</td>
<td>15·0</td>
</tr>
<tr>
<td>Paratype 1</td>
<td>7·0</td>
<td>9·0</td>
</tr>
<tr>
<td>Paratype 2</td>
<td>10·5</td>
<td>10·5</td>
</tr>
<tr>
<td>Paratype 3</td>
<td>9·0</td>
<td>11·0</td>
</tr>
<tr>
<td>Paratype 4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(Measurements given here indicate respective mean length and width values of 9·12 and 11·37 mm)

Type horizon and locality. Bryn Beds (Lower Longvillian) exposed in small overgrown quarry 55 m east of Pandy Quarry (SJ 202363).

Figs 64–65 Bimaria dyfeusis sp. nov. (p. 215). Gelli-grin Formation, Rhiw March, near Llany-mawddwy. Figs 64a, b, Paratype, BB92241a. Internal mould of a pedicle valve, x 4; corresponding latex cast, x 2·5. Fig. 65. Paratype, BB92240a. Internal mould of a pedicle valve, x 4. See also Figs 60–62.

Figs 66–69 Parastrophinella brenchleyi sp. nov. (above). Bryn Beds, Pandy Quarry, near Glyn Ceriog. Fig. 66. Holotype, NMW.77.11G.24. Internal mould of a pedicle valve, x 4. Figs 67–69. Paratypes, NMW.77.11G.26, NMW.77.11G.25 and NMW.77.11G.27 respectively. Internal moulds of pedicle valves, all x 4.

Figs 70–76 Protozyga musculosa sp. nov. (p. 218). Nod Glas Formation; all internal moulds. Figs 70, 74–76, Rhiw March, near Llany-mawddwy. Fig. 70. Paratype, BB92249. Pedicle valve, x 8. Fig. 74, Paratype, BB92246. Pedicle valve, x 16. Fig. 75, Paratype, BB92252. Brachial valve, x 10. Fig. 76, Paratype, BB92247. Pedicle valve, x 16. Figs 71–73, Nant Tan y Bwlch, near Bwlch y Groes. Fig. 71, Paratype, BB92253. Pedicle valve, x 9. Fig. 72, Holotype, BB92245. Pedicle valve, x 12. Fig. 73, Paratype, BB92254. Pedicle valve, x 9.

Figs 77a, b Cyclospira aff. bisulcata (Emmons) (p. 219). Cymerig Limestone Member, Rhiw March, near Llany-mawddwy. BB92255. Ventral and dorsal views of the exterior of an articulated specimen, both x 6. See also Figs 78–82.
Discusssion. This material, collected by Dr P. J. Brenchley from a single locality, has hitherto been described only briefly and informally (Brenchley 1966: 242; figs 161–162). Parastrophinella is known from Scotland (Williams 1962), from Wales (MacGregor 1961, Addison 1974) and from the Welsh Borderland (Williams 1974). The Scottish species P. youngi (Reed) from the Craighead Limestone (Caradoc) differs from P. brenchleyi in being characteristically tumid with poorly-developed costae primarily associated with plication. Similarly, P. parva MacGregor (1961: 197) from the Llandeilo rocks of the Berwyns is small, tumid and lacks well-developed costae; Addison (1974: 47) also recorded this species in rocks of early Caradoc age near Narbeth (Pembrokeshire). However, the other smaller species, P. costata MacGregor (1961: 199) from the Llandeilo of the Berwyns, resembles P. brenchleyi in outline, length/width ratio and spondylial arrangement, but differs in being considerably smaller (mean size) and having a larger number of costae (13–22). P. musculososa Williams (1974: 151) from the Spy Wood Grit, Salop, resembles P. brenchleyi sp. nov. in ‘commonly’ having 11–13 costae (mean c. 12) and exhibiting a poorly-developed fold and sulcus and a similar spondylial arrangement, however, it differs in being smaller than P. brenchleyi (55% of mean width) and relatively but not significantly wider (25 > P > 10). A mean width/length ratio of 0.93 for 4 brachial valves of P. musculososa implies a smaller value for the corresponding, relatively longer pedicle valves (say < 0.90); this differs considerably from the ratio of 1.25 for 4 pedicle valves of P. brenchleyi. Although allometric growth might account for a relative increase in width with size, even in the absence of more material the differences in size, shape and ornament between P. musculososa and P. brenchleyi are sufficient to merit the systematic recognition of the latter species. Williams (1974: 152) also described Parastrophinella sp. from the Hagley Volcanics; although resembling P. brenchleyi in its sub-pentagonal outline and large size it differs from this form in having about 20 well-developed costae.

Order SPIRIFERIDA Waagen, 1883
Superfamily ATRYPACEA Gill, 1871
Family ATRYPACEA Gill, 1871
Genus PROTOZYGA Hall & Clarke, 1893

Protozyga musculososa sp. nov.
Figs 70–76

Diagnosis. Small subcircular to subspherical Protozyga with well-developed dental plates and pedicle valve musculature.

Name. With reference to the well-developed musculature.

Description. Small subcircular to subelliptical or subpentagonal ventribiconvex Protozyga as wide as long, with long subparallel to slightly divergent dental plates extending anteromedially for between half and two-thirds the length of the pedicle valve and enclosing equally long diductor muscle scars best developed in larger specimens. External features poorly known; ornamentation smooth but nature of anterior arc of commissure unknown.

Brachial valve interior with posterolateral socket plates and long median septum arising at a point anterior to the hinge line and extending anteriorly for most of the length of the valve.

Statistics for three measured pedicle valve paratypes; mean length (2.73 mm), mean width (2.73), r (0.9736), a (1.077) and b (−0.1415).

Type material, horizon and localities. Holotype, internal mould of pedicle valve, BB92245 (length 3 mm, width 3 mm). From bed TB19 in the Nod Glas at Nant Tan y Bwlch. Paratypes, internal moulds of pedicle valves, BB92246–BB92251 and BB92253–BB92254, and a single brachial valve, BB92252. From beds TB19 and R54 in the Nod Glas at Rhiw March.

Discussion. This occurrence is the first record of Protozyga in Wales; related forms including P. diversa (Reed), P. rotunda Cooper and P. perplexa Williams from Girvan and P. cf. perplexa and P. cf. diversa from Pomeroy are unlike the Welsh species both in the ventral arrangement of dental plates and diductor muscle scars and in the posterior origin of the brachial valve median septum.
CARADOC FAUNAL ASSOCIATIONS

Superfamily DAYiACEA Waagen, 1883
Family DAYiIDAE Waagen, 1883
Subfamily CYCLOSPIRINAE Schuchert, 1913
Genus CYCLOSPIRA Hall & Clarke, 1893

Cyclospira aff. bisulcata (Emmons, 1842)
Figs 77-82

DIAGNOSIS. Unequally biconvex, subpentagonal Cyclospira with rounded anterior margin.

DESCRIPTION. Unequally biconvex Cyclospira with pedicle valve nine-tenths as wide as long and brachial valve about as wide as long. Pedicle valve strongly convex in median part of valve with slight development of anteromedian sulcus and flat or concave posterolateral flanks or ‘wings’ subparallel to commissural plane.

External ornament mainly smooth but with fine concentric growth lines developed anteriorly and fine radial striations emphasized by slight exfoliation of shells. Pedicle interior characterized by well-developed ‘shoelifter process’ partly anterior to ventral muscle field.

Brachial valve sulcate with slight development of median plication dividing anterior part of sulcus. Interior characterized by median septum originating just anterior of medially cleft hinge line and extending anteriorly for at least three-quarters of the valve length. Thin socket plates present.

MATERIAL. Measurements in mm.

<table>
<thead>
<tr>
<th></th>
<th>PV length</th>
<th>PV width</th>
<th>BV length</th>
<th>BV width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete articulated specimen, BB92255</td>
<td>5-0</td>
<td>5-5</td>
<td>4-5</td>
<td>5-5</td>
</tr>
<tr>
<td>Complete articulated specimen, BB92256</td>
<td>4-0</td>
<td>3-5</td>
<td>3-9</td>
<td>3-5</td>
</tr>
<tr>
<td>External of pedicle valve, BB92257</td>
<td>5-6</td>
<td>5-0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Latex cast of articulated specimen, BB92258</td>
<td>4-6</td>
<td>4-4</td>
<td>4-2</td>
<td>4-4</td>
</tr>
<tr>
<td>Complete articulated specimen, BB92259</td>
<td>4-7</td>
<td>4-6</td>
<td>4-1</td>
<td>4-6</td>
</tr>
<tr>
<td>Internal and external mould of pedicle valve, BB92260a, b</td>
<td>(5-0)</td>
<td>(4-2)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Internal mould of brachial valve, BB92261</td>
<td>–</td>
<td>–</td>
<td>(3-0)</td>
<td></td>
</tr>
</tbody>
</table>

Statistics of length and width for 12 pedicle and 7 brachial valves are given in Fig. 45C.

HORIZON AND LOCALITIES. From bed R53 in the Cymerig Limestone at Rhiw March and bed TB20 in the Tan y Bwlch section.

DISCUSSION. The material recovered in this study affords an excellent opportunity to elaborate on the description of the Cyclospira sp. which Williams (1963 : 469) described as ‘reminiscent’ of C. bisulcata (Emmons). C. bisulcata is one of six species described by Cooper (1956); of these only a form related to C. ? longa (Cooper) has previously been described from British successions (Williams 1962 : 251; pl. 23). C. carrickensis (Reed) and C. nana (Davidson) have also been described from Ordovician rocks by Williams (1962) and Mitchell (1977) respectively. The specimens from north Wales are unlike C. ? longa, which has an almost triangular outline with incipient plication of the anterior commissure (Cooper 1956 : pl. 142.1). They are also unlike C. nana in having a longer median septum and thinner socket plates. They differ from C. carrickensis in not having an emarginate anterior commissure (Williams 1962 : 250) but are otherwise similar in exterior morphology.

The present C. aff. bisulcata bears a general resemblance to both C. quadrata Cooper and C. preciosa Cooper, but these two American species lack any median plication in the dorsal sulcus and show little or no ventral sulcation. C. parva Cooper and particularly C. sulcata Cooper are considerably more elongate than the present form. The species described by Cooper are hard to differentiate on external morphology; internal features are not illustrated, though C. parva, C. quadrata and C. ? longa are all known to have a dorsal median septum. The species based on British specimens (including C. aff. bisulcata) are probably better known in their internal morphology. The designation of this species as C. aff. bisulcata supports the suggestion of Williams (1963) that the Welsh Cyclospiridae belong to a group closely related to C. bisulcata.
Superfamily unknown

? Spiriferide, gen. indet.

Fig. 83

DESCRIPTION AND DISCUSSION. Pedicle valve about as wide as long, with well-defined ‘shoelifter process’, which differs from C. aff. bisulcata in having paired raised scars in median part of valve between flanks of anterior part of process. External ornament of (unfigured) counterpart smooth. Posterior lateral flanks of valves show more ‘wing-like’ extension than in C. aff. bisulcata, but the possibility that this specimen is closely related to that form cannot be ruled out.

MATERIAL AND LOCALITY. Pedicle valve internal and external moulds (BB92262a, b), from loc. 615a in beds above the Cymerig Limestone on Pen y Cefn Coch.

Other phyla
In addition to the brachiopod taxa described above, representatives of other phyla, notably the Arthropoda (Trilobita) and Mollusca (Bivalvia), are also recorded in the Lower Bala Group for the first time. These include four trilobite genera and five bivalve genera which are figured below but not accompanied by full systematic descriptions. Brief discussion on the significance of these newly recorded genera is included where appropriate.

Phylum ARTHROPODA Siebold & Stannius, 1845

Class TRILOBITA Walch, 1771

Family PHILLIPSINELLIDAE Whittington, 1950

Genus PHILLIPSINELLA Novak, 1886

Phillipsinella sp.

Figs 84–87

MATERIAL AND LOCALITY. Three pygidia (It.14294–6) and four cephalic (glabellar) fragments (It.14297–300) from bed R53 in the upper part of the Cymerig Limestone at Rhiw March.

DISCUSSION. These specimens, from beds of ‘presumed’ Upper Longvillian age, are the oldest known Phillipsinella specimens in Britain (Ingham, personal communication 1977); they are the first record of this genus in the Caradoc Series of north Wales. The phylogeny of the genus is discussed in Bruton (1976).

Figs 78–82 Cyclospira aff. bisulcata (Emmons) (p. 219). Figs 78–81, Cymerig Limestone Member, Rhiw March, near Llanymaund. Fig. 78, BB92258. Posterodorsal view of latex cast of an articulated specimen, ×7·5. Fig. 79, BB92257. Exterior of a pedicle valve, ×5. Fig. 80, BB92261. Internal mould of a brachial valve, ×8. Figs 81a, b, BB92256. Ventral and dorsal views of the exterior of a broken articulated specimen, both ×5. Fig. 82, Nod Glas Formation, Nant Tan y Bwlch, near Bwlch y Groes. BB92260. Internal mould of a pedicle valve, ×5. See also Figs 77a, b, Fig. 83 ? Spiriferide, gen. indet. (above). Gelli-grfn Formation, Pen y Cefn Coch. BB92262a. Internal mould of a pedicle valve, ×5.

Figs 84–87 Phillipsinella sp. (above). Cymerig Limestone, Rhiw March, near Llanymaund. Figs 84a, b, It.14297. Oblique left-lateral and left-lateral views of a cranidium, ×16. Fig. 85, It.14298. Oblique left-lateral view of a cranidium, ×16. Fig. 86, It.14299. Dorsal view of a small cephalon, ×15. Fig. 87, It.14294. Dorsal view of a pygidium, ×16.

Figs 88–89 Louchodomas sp. (p. 222). Cymerig Limestone Member, Rhiw March, near Llanymaund. Fig. 88, It.14301. Dorsal view of plasticine cast of cranidium, ×3. Fig. 89, It.14302. Dorsal view of cranidium, ×4.

Figs 90–91 Sphaeroocoryphe sp. (p. 222). Cymerig Limestone Member, Rhiw March, near Llanymaund. Dorsal views of cranidia, both ×6. Fig. 90, It.14307. Fig. 91, It.14308.

Fig. 92 Cyphoproctus sp. (p. 222). Derfel Limestone, Nant Aber Derfel. It.14309. Dorsal view of cranidium, ×15.
Family Raphiophoridae Angelin, 1854
Genus Lonchodomas Angelin, 1854
Lonchodomas sp.
Figs 88–89

Material and localities. Five cephalic specimens (It.14301–5) from bed R52 at Rhiw March and a single cephalic specimen (It.14306) from bed R49 are the first record of this genus in the Lower Bala Group.

Family Cheiruridae Salter, 1864
Genus Sphaerocoryphe Angelin, 1854
Sphaerocoryphe sp.
Figs 90–91

Material and locality. Two spherical, pustulose glabellae (It.14307–8) from bed R52 in the Cymerig Limestone at Rhiw March are the first record of this genus in the Lower Bala Group.

Family Proetidae Salter, 1864
Genus Cyphoproetus Kegel, 1927
Cyphoproetus sp.
Fig. 92

Material and locality. The internal and external mould of a cranidium (It.14309) from the type Derfel Limestone at Nant Aber Derfel (SH 850395) is the first record of this genus in the Ordovician of Wales.

Phylum Mollusca
Class Bivalvia Linné, 1758

Introduction
Recent studies by Brenchley (1966), Pickerill (1974), Hurst & Hewitt (1977), Hurst (personal communication 1978) and Pickerill & Brenchley (1979) show that the Mollusca, and in particular the Bivalvia, are, after the Articulata (Brachiopoda) and Trilobita, one of the most important classes of organism found in the shelly facies of the Caradoc Series in Wales and the Welsh Borderland. But their importance has not been emphasized, and in Wales, largely because of poor preservation and indistinctive, mainly external morphology, the class has received little attention. Since the above authors record the occurrence and distribution of various bivalve genera in Wales and the Welsh Borderland, distinctive forms recovered from the Lower Bala Group are noted here.

Although Ordovician Bivalvia from eastern North America (Bretsky 1970, Pojeta 1971) are generally more common in contemporary Middle to Upper Ordovician deposits of the Appalachians (Bretsky, personal communication 1977), and the overall distribution of Anglo-Welsh Caradoc Bivalvia has yet to be outlined in any detail, the occurrence of congeneric taxa in both areas implies reasonable prospects for future correlations and comparisons.

Figured material
The forms figured here are assigned to genera but not described in any detail. In general the material from the Bala area is less abundant and well-preserved than that from the Berwys and Salop. Any attempt at full systematic description of the Bala material would prove unrewarding without detailed consideration of other, more abundant material in other parts of the Anglo-Welsh region, but full locality details are given for the material discussed.
Material and localities. Internal moulds of nuclloid bivalves from beds AD A (PL 4441–3) and loc. 35 (PL 4440) in the middle part of the Allt Ddu Formation are provisionally assigned to Cardiolaria sp. The four numbered specimens have respective height and length measurements (mm) as follows: 2·5 and 4·0; – and 3·5; 3·0 and 5·0; 3·5 and 5·5 (means 3·0 and 4·5). Dentition is observed in the first two specimens.

Family MALLETIIDAE Adams & Adams, 1858
Genus NUCULITES Conrad, 1841
Nuculites sp.
Fig. 96

Material and locality. A single phosphatized internal mould of an articulated specimen (PL 4444), height 5·0 mm, length 8·0 mm, was recovered by Mr P. Magor from the locally-developed limestone beds in the lower part of the Nod Glas at Pistyll Gwyn. The posterior part of the hinge exhibits about 12 poorly-preserved, fine teeth each about 0·2 mm in width.

Discussion. The above two nuclloids, though uncommon in most of the succession, are the only sessile benthos recovered from parts of the ‘faunal depletion zone’ in the middle part of the Allt Ddu Formation. They are considered to be infaunal deposit feeders. In the absence of better-preserved material Dr N. J. Morris, who has helped the author with the identification of bivalve taxa, has suggested that forms resembling the genera Praenucula and Palaeosolen are also present amongst the unfigured material collected from the middle part of the Allt Ddu Formation.

Order MODIOMORPHOIDA Newell, 1965
Family MODIOMORPHIDAE Miller, 1877
Genus MEDILOPsis Hall, 1847
Mediolopsis sp.
Figs 97, 98

Material, localities and discussion. Specimens (PL 4445 and PL 4446a, b) from beds at loc. 928 (8990 2234) and from bed AD 3J, respectively, in the upper part of the Allt Ddu Formation are assigned to the genus Mediolopsis. The Modiomorphidae are usually considered to have been byssally attached, semi-infaunal or epifaunal suspension feeders.

Order ARCOIDA Stoliczka, 1871
Family CYRTODONTIDAE Ulrich, 1894
Genus CYRTODONTA Billings, 1858
Cyrtodonta sp.
Figs 99–101

Material, localities and discussion. Specimens from beds GG 1X (PL 4447), AD 0 (PL 4448) and H13 (PL 4449) are assigned to this genus. The former, an articulated specimen, was found in presumed life position with the umbones pointing downwards. Another specimen, PL 4450 from bed CYG 5 (see Fig. 8, p. 179), is assigned to ? Cyrtodonta sp.
Order **PHOLADOMYOIDEA** Newell, 1965
Family **GRAMMYSIIDAE** Miller, 1877
Genus **CUNEAMYA** Hall & Whitfield, 1875

Cuneamya sp.
Figs 102a–c

MATERIAL, LOCALITY AND DISCUSSION. A single, well-preserved specimen (PL 4451) of an articulated *Cuneamya* was recovered from bed AD 3H in the Allt Ddu Formation. This genus is commonly regarded as having had a burrowing, infaunal mode of life.

Discussion of the Bivalvia

Brenchley (1966), Pickerill (1974) and Pickerill & Brenchley (1979) record *Modiolopsis*, *Goniophorina*, *Arca*, *Psilonychia* and *Vlasta* in their Howellites Community, Byssodesma, *Psilonychia* and a pteriacean in the *Dinorthis* Community and *Colpomya* in the *Dalmanella* Community. Pickerill (1974) also referred to *Ambonychia*, *Ctenodonta* sp. and *M. modiolaris* in the Berwyn area. Most of the bivalves in the Caradoc Series of north and central Wales are confined to the Soudleyan Stage.

Dr J. M. Hurst has collected a large number of bivalves from the Caradoc Series of Shropshire, many of which are congenereic with, or otherwise closely related to, bivalves from Wales. The author, who is currently examining some of this material, has collected *Cyrtodonta* from the lower part of the Chatwall Flags (Soudleyan) and has also examined faunas rich in nuculoid bivalves from the Acton Scott Beds. In the light of forthcoming publications on the Shropshire faunas, however, further comment on the known and recently-discovered bivalvia is considered premature.

Class GASTROPODA Cuvier, 1797

Elles (1922) recorded the gastropod genera *Cyclonema*, *Bellerophon (Sinuites)*, *Lophospira* and *Murchisonia* in the Caradoc Series at Bala. In the present study representatives of the three former genera have been recorded in 55 of the 196 samples corresponding to the main sections (Figs 2, 8, 12–15). Dr J. S. Peel confirmed the identifications and noted that two distinct species of

Figs 93–95 ? *Cardiolaria* sp. (p. 223). Allt Ddu Formation, south side of Pen y Cefn Coch. Figs 93a, b, PL 4440. Left-lateral and anterior views of internal mould of an articulated specimen, both ×7.5. Fig. 94, PL 4442. Internal mould of a right valve, ×6. Fig. 95, PL 4443. Internal mould of a right valve, ×9.

Fig. 96 *Nuculites* sp. (p. 223). Limestone beds beneath the Cymerig Member in the Nod Glas Formation at Pistyll Gwyn, near Llanymawddwy. PL 4444. Right-lateral view of internal mould of an articulated specimen, ×5.

Figs 97–98 *Modiolopsis* sp. (p. 223). Allt Ddu Formation. Fig. 97, Craig y Gath, near Llangower. PL 4445. Right-lateral view of external mould of an articulated specimen, ×1.5. Fig. 98, north of Craig Ty nant, near Llanymawddwy. PL 4446a. External view of a right valve, ×1.5.

Figs 99–101 *Cyrtodonta* sp. (p. 223). Figs 99–100, Allt Ddu Formation. Fig. 99, west of Gelli-grin Farm, Bala. PL 4448. Left-lateral view of an articulated specimen, ×2. Fig. 100, Craig y Gath, near Llangower. PL 4447. External mould of a left valve, ×4.5. Fig. 101, Llaethnant Formation, Afon Twrch, near Bwlch y Groes. PL 4449. External mould of a left valve, ×4.5.

Figs 102a–c *Cuneamya* sp. (above). Allt Ddu Formation, Craig y Gath, near Llangower. PL 4451. Dorsal, anterior and left lateral views of the external mould of an articulated specimen, all ×2.

Fig. 103 ? *Archinacella* sp. (p. 226). Nod Glas Formation, Rhiw March, Llanymawddwy. PG 5022. Left-lateral view of an internal mould of a complete specimen, ×6.

Fig. 104 *Balaerinus basalis* (M'Coy) (p. 226). Allt Ddu Formation, Rhiw March, Llanymawddwy. E 67750. External mould of cup remains and attached arm and pinnule remains, ×2.

Fig. 105 *Stenaster obtusus* (Forbes) (p. 226). Allt Ddu Formation, Ty nant Farm, south of Llanuwchyll Wyn. E 53698. Internal mould of a complete specimen, ×4.
Cyclonema are found, in the Allt Ddu and Gelli-grin formations respectively. Material from this study is not figured here.

Pickerill & Brenchley (1979) record Cyclonema, Cyrtolites, ? Seelya, Sinuites and Bucanopsis from the Howellites Community, and Lophospira and Murchisonia in the Dinorthis and Dalmanella Communities respectively. Pickerill (1974) also referred to Bucania sp. and Kokenospira in the Lower Cwm Rhiwarth Siltstones.

Class MONOPLACOPHORA Wenz in Knight, 1952
Family ARCHINACELLIDAE Knight, 1956
Genus ARCHINACELLA Ulrich & Scofield, 1897
? Archinacella sp.
Fig. 103

A single asymmetrically conical shell mould (PG 5022) from bed R45 at the base of the Nod Glas Formation resembles Archinacella and is provisionally assigned to this genus.

Class CEPHALOPODA Cuvier, 1797

Material and discussion. Although representatives of the Cephalopoda are recorded in 33 of the 196 samples corresponding to the main sections, most material is poorly preserved. However, a single well-preserved specimen (C 81324) from bed H40 (Fig. 4, p. 176) is assigned to ? Ortho-
ceras and deposited with the other material figured here.

Phylum ECHINODERMATA
Class CRINOIDEA Miller, 1821
Subclass CAMERATA Wachsmuth & Springer, 1885
Family ARCHAEOCRINIDAE Moore & Laudon, 1943
Genus BALACRINUS Ramsbottom, 1961
Balacrinus basalis (M'Coy)
Fig. 104

Material, locality and discussion. A well-preserved external mould (E 67750) of cup showing characteristic plate pattern, arm and pinnule remains was recovered from sample R14 in the Allt Ddu Formation at Rhiw March. Despite the occurrence of numerous fragmentary crinoid remains in the majority of samples (see Figs 4, 6–9, 12–15, 17) this specimen is the only complete one recovered during this study.

Class STELLEROIDEA Lamarck, 1816
Subclass OPHIUROIDEA Gray, 1840
Order STENURIDA Spencer, 1951
Family STENASTERIDAE Schuchert, 1914
Genus STENASTER Billings, 1858
Stenaster obtusus (Forbes)
Fig. 105

Material, locality and discussion. A complete internal mould (E 53698) was recovered from beds immediately above the Frondderw Ash in the stream at Ty Nant (SH 906262); this is the same horizon from which sample 1022B was obtained (Fig. 6A, p. 178). The specimen is from a similar stratigraphical horizon (associated with the Frondderw Ash) to the Moel y Garnedd locality from which Salter recovered a specimen (Spencer 1927 : pl. 23). Elles (1922 : 138) recorded another ophiuroid Protaster salteri (Salter, ex Forbes) from immediately above the Cefn Gwyn Ash (Cefn Gwyn) (Spencer 1934 : pl. 31).
Faunal communities and associations

Unlike the Silurian faunas categorized by Zeigler (1965), Ziegler et al. (1968) and others into benthic ‘communities’, British Ordovician faunas have not, until recently, been classified in any such way, but elsewhere, e.g. in eastern North America, several Ordovician communities have been named by Bretsky (1969) and others.

Williams (1973 : 242–243) concluded that the Lower and Middle Caradoc faunas of Wales and the Welsh Borderland contained four facies-related ‘faunal associations’ (or ‘communities’), named after Dinorthis, Nicolectiona, Omniella and Howellites, which are respectively characterized by 4, 5, 2 and 1 other named brachiopod genera. He also named a fifth association, the ‘Bicuspina set’, which is characteristic of the Upper Llandeilo and Lower Caradoc succession of the Shelve area (Williams 1976 : 39); the quantitative composition of this set (Williams 1974 : tables 7–11) allows it to be distinguished, by cluster analysis, from two other pre-Caradoc, inarticulate-dominated Shelve sets. The Bicuspina set is readily compared with the Dinorthis Association as they contain elements in common, in particular Dalmanella, Heterorthis and Bicuspina itself.

Pickerill (1974, 1977 : figs 3, 4) and Pickerill & Brenchley (1979) followed Williams (1973) by naming a Dinorthis, a Nicolectiona, an Omniella, a Howellites and a Dalmanella ‘community’ from the South Berwyns; the Dinorthis community is considered to consist of component Dinorthis and Macrocoelia ‘sub-communities’, which are essentially analogous to ‘populations’ referred to by Bretsky (1970). Unlike Williams they used quantitative measurements of ubiquity and average abundance to define four of these five communities; they referred only briefly to the fifth, Omniella community with associated genera. As the author, independently, chose to define the associations named here in a similar fashion to the quantitative method of Pickerill & Brenchley, an excellent opportunity is afforded for comparisons between the compositions of related associations in adjacent areas. Like Williams (1973, 1976) and Pickerill & Brenchley (1979) I use dominant genera in naming the associations described here; this permits the following direct comparisons.

The Howellites community of the South Berwyns is essentially similar to the contemporary Howellites–Paracranioi Association described here; both occur in a mudstone or silty mudstone facies and have Howellites, Paracranioi, Macrocoelia, Reuschella, Bicuspina, Leptaena, Sowerbyella, Broeggerolithus and Brongniartella amongst the more persistent (ubiquitous) and abundant elements. The main difference between the two associations is the relative importance of Sowerbyella in the South Berwyns. This is partly a reflection of a difference in the range of strata considered in the two areas; if the fauna of pre-middle Allt Ddu beds bearing Sowerbyella and Heterorthis were considered in conjunction with the upper Allt Ddu association the compositional resemblance of the associations in these two areas would be even more striking.

The composition of the Howellites–Kloucekia Association (and the closely related marginal Howellites association, Fig. 19, p. 193) is quite distinct, in detail, from the other Howellites-dominated associations referred to here. The brachiopods Paracranioi, Macrocoelia, Reuschella, Bicuspina, Leptaena and Sowerbyella and the trilobite Brongniartella are rare, absent or, like Howellites and Broeggerolithus, represented in this association by species distinct from those found in the older association(s) elsewhere. The association is further characterized by the relative persistence of Skenidioides and Kloucekia.

Although Howellites and Broeggerolithus are characteristic of all associations incorporating the name Howellites, it is clear that the Allt Ddu and Gelli-grin associations of the area south of Bala are quite distinct and should not be considered jointly as Williams (1973) has done.

The Dinorthis Association, sensu Williams, although recognized by Pickerill & Brenchley in the South Berwyns, has not been identified in the Lower Bala Group south of Llanuwchllyn. Current evidence suggests that it is recognizable in parts of the Soudleyan succession in the Bala area (sensu Bassett et al. 1966) but not in equivalent beds to the south. For example, Dinorthis is a dominant element in sample GG1X (Fig. 12, p. 184) but is rare in equivalent beds at Craig y Gath (Fig. 8, p. 179) and unknown in the equivalent Rhiw March section (Fig. 9, p. 180). Williams (1973) states that the association is characterized by Bicuspina, Dalmanella, Heterorthis and Leptaena; this is confirmed by Pickerill & Brenchley (1979) who recognize these genera together
with Howellites, Reuschella, Sowerbyella, Paracraniops, Macrocoelia, Broeggerolithus and Brongniartella amongst the dominant and persistent elements of the Dinorthis sub-community in the South Berwyns. It is significant that these latter seven genera are all of equivalent importance in the South Berwyn Howellites community and the Howellites–Paracraniops Association. However, in the Dinorthis sub-community (sensu Pickrell & Brenchley 1979) of south Salop, Bicuspina and Reuschella are not recorded whereas Harknessella and Salapia are considered important elements. At various specified horizons in the Salop, south Berwyns, Breidden Hills and Snowdonia successions, these authors consider the community to be represented by the Macrocoelia sub-community which, apart from being dominated by this genus, is essentially similar in composition to the Dinorthis sub-community. Similarly, their Dalmanella community, which is not recognized in the Bala area, is composed essentially of elements which characterize their Howellites and Dinorthis communities; its only very distinctive feature is the relative importance of Dalmanella.

The Kullervo–Nicolella–Palaeostrophomena Association (Williams in Whittington & Williams 1955), the Nicolella association/community sensu Williams (1973) and of Pickrell & Brenchley (1979) and the phases of the Nicolella–Onniella Association (defined here) are clearly closely related. The six brachiopod genera, including Nicolella, referred to by Williams as components of the association are not those which are most characteristic of the Welsh associations. Pickrell & Brenchley (1979) and the present study have shown, for their respective associations, that the most dominant and persistent elements are Nicolella, Dolerorthis, Skenidioides, Eoplectodonta, Leptestina, Onniella, Platystrophia, Bicuspina and Reuschella. Of these Platystrophia is particularly abundant in the South Berwyns, but not at Bala, whilst Onniella, Eoplectodonta, Reuschella and Bicuspina are considerably more important in this latter area.

In the area considered here the importance of Onniella and Eoplectodonta in the Nicolella–Onniella Association cannot be overlooked. Not only are both forms considerably more abundant, at certain horizons, than any other brachiopod genera but they also represent a ‘dalmanellid–pectambonitacean combination’ noted in numerous Ordovician faunal associations in Britain and elsewhere. The so-called Onniella association/community referred to by Williams/Pickrell & Brenchley, although not quantitatively defined, appears to differ from the Onniella associations of this paper.

The Onniella–Sericoidea Association quantitatively outlined here is clearly related to the Onniella association/community referred to by Williams/Pickrell & Brenchley. Both the Pen y Garnedd Shale and Dyfi Mudstone associations contain Onniella, Sericoidea and Paterula. This particular dalmanellid–pectambonitacean association is typical of argillaceous parts of the Caradoc Series elsewhere in Britain. For example, Hurst (personal communication 1978) reports an Onniella–Sericoidea type of association in the Onny Shales. Similarly, Dean (1959) described Marshbrookian to Pusgillian faunas characterized by Onniella and Chonetoidea (and Sericoidea, A. D. Wright, personal communication 1975) from the Cross Fell area.

The Sericoidea Association of the Pistyll Gwyn, Y Cenunt and Aber Cowarch sections (Figs 17 & 19, pp. 190–193) is simply a diluted (low diversity, low equitability) marginal variety of the Onniella–Sericoidea Association. Between Bala and Dinas Mawddwy there is a pronounced lateral variation in the faunal associations (and facies) of the uppermost 20 m of the Caradoc succession. The Nicolella–Onniella Association (occupying coarse, calcareous clastic substrates) passes laterally into the Onniella–Sericoidea and Sericoidea Associations (calcareous mudstones), then into a graptolitic association (in black shales); see Fig. 18, p. 192.

Contemporary Scoto-Irish faunas described by Williams et al. (1962) and Mitchell (1977) have yet to be categorized into named associations. These faunas are fundamentally different from those of ‘Anglo-Welsh’ affinity; this is a reflection of the mid-Ordovician separation of northern and southern Britain by the Proto-Atlantic ocean (Smith et al. 1973). The discovery of Bimuria and Protozyga in Wales and the recognition of wider distributions for Cyclospira, Palaeostrophomena and Anisopleurella are evidence of more mixing of Scoto-Irish with Anglo-Welsh faunas than was hitherto supposed.

Despite the fact that Whittington & Williams (1955: 398) and Williams (1962: table 2; 1969: 131–135) have shown that faunal associations with Scoto-American (or Scoto-Appalachian)
affinities show little similarities to those known from the Anglo-Welsh region, recent studies by Bayer (1967), Fox (1968), Bretsky (1969, 1970), Bretsky & Bretsky (1975, 1976), Walker & Laporte (1970), Walker (1972), Walker & Alberstadt (1975), Walker & Parker (1976) and others have led to the naming of a number of associations or communities from the Mid- to Upper Ordovician of the Appalachians which show striking parallels with those named from the Anglo-Welsh region.

Among these ‘American communities’ are several named after familiar dalmanellid–pectalambonitacean combinations including the Omnila–Sowerbyella community (Bretsky 1969), the Eoproducta (Thaerodonta)–Onniella community (Bayer 1967) of the mid-continent upper Ordovician and the Resserella–Sowerbyella assemblage (Fox 1968); similarly, data given by Titus & Cameron (1976 : 1216–1217) reveal that Paucicirure and Sowerbyella represent about two-thirds (mean relative abundance) of the total fauna in four out of five communities named after rarer elements.

Other communities named after or dominated by genera common to the Anglo-Welsh successions are as follows. The mid-Appalachian Rafinesquina, Sowerbyella, Lophospira Association and the Omnila–nuculoid bivalve Association named by Bretsky (1969) from siltstones and mudstones respectively, as component associations (or ‘populations’) in the Sowerbyella–Omniella community, are reminiscent of parts of the Berwyn and Salopian faunal successions respectively. Similarly, the succession dominated by Omnila and Cryptolithus outlined by Bretsky & Bretsky (1975 : 228) from the upper Ordovician of Quebec is shown subsequently by these authors (1976 : table 3) to be dominated at different horizons by combinations of genera including Nuculites with Cryptolithus and Nuculites with Omnila (cf. Bretsky 1969). Such combinations are again reminiscent of parts of the Anglo-Welsh Caradoc successions.

The upper Ordovician Platystrophia–Leptaena assemblage (Fox 1968) is comparable to the Nicoletella community (sensu Pickerill & Brenchley 1979) which, in addition to occurring in a similar calcareous facies, contains these two former genera amongst its most important elements.

Walker & Laporte (1970) and Walker (1972) referred to Strophomena and Dalmanella respectively as ‘major’ taxa in inferred low intertidal and subtidal carbonate facies of the middle Ordovician of New York. Similarly, Walker & Alberstadt (1975) and Walker & Parker (1976) have named a Rostricellula–Strophomena community from the middle Ordovician of the southern Appalachians. All these genera represent important or dominant elements in parts of broadly contemporary Anglo-Welsh successions.

Although Williams (1969 : 133–137) referred to Sowerbyella, Sericoidea, Macrocoelia, Rafinesquina, Strophomena, Platystrophia, Dalmanella, Howellites and Omnila as widespread or pandemic genera in Caradoc to Ashgill times, there has hitherto been little comment on their importance as ‘community dominants’ in parts of both the American and north European provinces. In the Anglo-Welsh and Appalachian regions the importance of dalmanellid–pectalambonitacean dominated associations cannot be overemphasized; combinations like Dalmanella with Sowerbyella (in the Upper Llanvirn–Llandeilo of south Wales) and the other Caradoc to Ashgill combinations mentioned above occupy a wide variety of facies including limestones, tuffs, sandstones, siltstones and fine mudstones.

Conclusions

The present study suggests that detailed local examination of (Caradoc) faunal successions can lead to the identification of distinct associations dominated by different species of the same, often ubiquitous, genera. Since associations are commonly named after such dominant forms, a paradoxical situation arises, where on the one hand local interassociation variation is easily demonstrated, yet on the wider provincial scale considerable uniformity appears to be the rule. Such a paradox is the result of a dual influence. Firstly, the use of generic rather than specific terminology in the naming of communities, although favouring brevity, masks important differences. Secondly, the widespread occurrence of various species of ubiquitous genera strongly suggests that ‘parallel communities’ (sensu Thorson 1957, 1966) characterized Ordovician marine benthic environments. For these reasons it is emphasized that the generic names employed in the
classification of associations should refer unequivocally to particular species at particular horizons, as stated or implied here in all cases. This approach permits named communities to be specifically identified and distinguished from other local or distant, more or less contemporary parallel communities dominated by ubiquitous congeneric forms.

Acknowledgements

Amongst the many geologists to whom I wish to extend my thanks are Professor P. W. Bretsky, Professor H. B. Whittington and in particular Professor A. Williams; also Drs L. R. M. Cocks, G. E. Farrow, R. A. Hewitt, J. M. Hurst, J. K. Ingham, P. Magor, N. J. Morris, J. S. Peal, I. Strachan, G. B. Slater, R. M. Watkins and C. Wilcox. I also wish to thank Mr & Mrs Davies, Mr & Mrs Edwards, Mr & Mrs Lewis, Mr D. Roberts and my wife Mary for assistance during my periods of fieldwork. A N.E.R.C. grant is also gratefully acknowledged.

References

NEW taxonomic names and the page numbers of the principal references are in bold type. An asterisk (*) denotes a figure.

Aber Cowarch 168, 188, 190, 196, 209, 228
Aegiromeninae 211-15
Afon Twrch 174-7, 186, 197, 200, 209
Agnostina 171
Alit-Ddu Formation 168, 175, 177-80, 182-4, 191-3, 197-8, 200, 204, 210, 223-4, 226-7
Ambonychia 224
Anisopylerella 173, 184-6, 202, 211, 228
cf. multisepata 211, 213*
Arca 224
Archaeocrinidae 226
? Archinacella sp. 225*, 226
Archinacellidae 226
Arcoida 223
Arthropoda 220
Atrypacea 218
Bala 167-9, 173, 191-2, 210, 222, 224, 227-8
Lake 166; see Lower, Upper Bala Group
Balacrinus 226
basalis 225*, 226
Balclatchie Mudstones 214, 216
Bancroftina 195, 209, 213*
Bellerophon 180, 184, 187, 190, 224
Berwyn 166-7, 173, 183, 202, 209, 222, 224, 227, 229
Beufy Isaf 175, 177-8
Bicusina 175-80, 182, 184-7, 189, 193, 195, 227-8
spiriferoides 194
Bimuria 186-7, 189, 202, 215, 228
cf. buttsi 215
dyfiensis 166, 213*, 215, 217*
youngiana 215
recta 215
Bimuridae 215
Bivalvia 167, 172, 176, 179, 180, 182, 184-5, 187, 190, 193, 220, 222
Brachiopoda 167, 172-3, 194, 202, 222
Broomergolithus 173, 176-80, 182, 184-90, 192, 194-6, 227-8
nicholsoni 195
soudleyensis 194
Brongniartella 176-80, 182, 184-7, 193, 227-8
cf. minor 194
Bryn Beds 202, 216
Bryozoa 172, 178, 180, 187, 190, 193
Bucania 226
Bucanopsis 226
Byssodesma 224
Byne Hill 212, 214
Camerata 226
Cardac 167, 169, 173, 183, 188, 191-2, 195, 199, 202, 218, 220, 222, 224, 227-9
Cardiolaria 223, 225*
Cephalopoda 172, 176, 178-80, 184-6, 226
Chaetops 175, 184-5, 187, 197
Cheiruridae 222
Chonetoida 228
radiatula 214
Cladocerambers minimus 186
Colpomya 224
Corris 167
Shale 169, 188, 196
Craig y Gath 168, 170, 178-9, 181-3, 193-4, 204, 227
Craniacea 205-6
Craniiidae 205-6
Craninidae 205-6
Craniopodidae 203-5
Cremnotheca 184-5, 187, 189
Crinoida 172-3, 176, 177-80, 184-7, 190, 226
Cryptolithus 229
Ctenodonta 224
Cuneamya 172, 224, 225*
Cyclonema 172, 180, 184, 187, 194, 224, 226
Cyclospira 178, 185-90, 193, 196, 202, 219, 228
aff. bisulcata 208, 217*, 219, 220, 221*
carrickensis 219
longa 219
nana 219
preciosa 219
quadra 219
sulcata 219
Cyclospirinae 219
Cymmerig Limestone 168, 178, 184-5, 188, 195-6, 198-9, 203, 209, 219-20, 222
Cyphoprotetus 173, 202, 221*, 222
Cyrtodonta 172, 223, 224, 225*
Cyrtodontidae 223
Cyrtolites 226
Cyrtotomella 173
Cystoidea 173, 185
Dalmanella 178, 180, 182, 184-7, 189, 195, 224, 226-9
Dalmanelliidae 178
indet. 177, 180, 184-7, 190, 193-4, 197, 209
Dayiacea 219
Dayiidae 219
Decacebele? sp. 173
Derfel Limestone 173, 175, 186, 191, 194, 202, 222
Dinas Caradoc 173
Dinas Mawddwy 167-9, 191-2, 228
Dinorthis 176-7, 179, 182-5, 187, 193, 224, 226-8
Dolerolithis 173, 175-6, 178, 184-6, 189, 193, 196-7, 228
Leptestiina 173, 178, 179, 193-6, 228
Valley 168, 175, 177, 183

Echinodermata 202, 226
Enteletacea 209
Eoplectodonta 173, 202, 205, 197
Echinodermata 209
Flexicalymene 178, 180, 183-7, 196
Frondderw Ash 168, 174-5, 186, 197, 209-10, 226
Gastropoda 172, 176, 178-9, 182, 185-7, 189-90, 193-4, 224
Gelli-grin Formation 168, 170, 173, 175, 178-9, 183-8, 191, 193-6, 198-200, 202-6, 209, 211, 215
Glossellinae 203
Glyn Gower Formation 168, 175, 183, 186, 197
Goniophorida 224
Grammysiidae 224
Graptoleidae 178-9, 182, 190, 193

Hagley Volcanics 218
Harknessella 228
Hedstroemia 186
Hemithyris depressa 210
Hengae Group 167-8
Heterorthis 175-8, 183, 191, 197, 227
cf. retrorsistria 197
Howellites 173, 176-80, 183-9, 190-4, 196-7, 199-200, 209, 224, 226-8
antiquior 184, 195-6, 207*, 209
ultimus 194, 207*, 209
isotelinid 178-80, 184-7

Kiaeromena 180
Kjaerina 187
(Hedstroemia) 186
Kloucekia 178, 184-91, 193-6, 199, 227
apiculata 195
Kokenospira 226
Kullervo 173, 228

Laggan Burn 212, 214
Leptaena 173, 176, 178-80, 182, 184-7, 189, 193, 195-6, 227, 229
Leptestidae 210
Leptestiina 173, 178, 184-7, 189, 196, 228
Leptestiinae 210
Lingulae 202

Lingulella 173, 202, 207*
cf. ovata 203, 207*
Lingulellinae 202

Lingulida 184-5, 202
Linoporellidae 210
Llaethnant Formation 168, 175, 183, 191, 197
Llandeilo 210
Llanuwchllyn 166-7
Llanymawddwy 166-7, 191
Lledwyn Lower Valley 168, 175, 183
Lophospira 224, 226, 229
Lower Bala Group 166-8, 173, 183, 186, 192, 202-3, 205-6, 209-10, 220, 222, 227

Machereida 172-3, 178-80, 182, 184, 186-90, 193
Macrocoelia 176, 179-80, 182, 184-7, 189, 193, 227-9
prolata 194
Maes-Meilion 168, 183, 185, 198
Malletiidae 223
Mediolopsis 172, 223, 224, 225*
Modiomorphoida 223
Mollusca 172, 185, 202, 220, 222
Monoplocaphora 172, 187, 226
Murchisona 224, 226

Nant Aber Derfel 222
Nant Bwlch-y-pawl 177
Nant Hir 175
Nant Rhyd Wen 204
Nant Tan y Bwlch 183, 186, 218
Nant y Nod 196
Nicolella 173, 175-6, 187, 184-7, 189, 191, 193-7, 199-200, 206, 227-8
cf. actoniae obesa 194, 206, 207*
humilis 194
Nod Glas Formation 167-9, 183-4, 187-8, 191, 196, 212, 214, 218, 223, 226
Nuculoida 223
Nuculites 188, 223, 225*, 229

Obolidae 202
Olenellinae 171
Olenidae 171
Oloniella 173, 175-80, 182, 184-7, 191, 193-6, 199-200, 209, 227-9
aff. avelini 194
ostentata 194, 197, 206, 207*, 209
Ophiuroidea 226
Ordoicrania 173, 210, 222, 227-9
Orthacea 206-9
Orthisocrania 205-10
Orthidae 206
Orthocardia 172-3, 177-9, 186, 189-90, 193
Oxoplecia 173, 186, 188

Palaeoglossa 187-8, 203
cf. attenuata 203, 207*
Palaeosolen 223
Caradoc Faunal Associations

Palaeostrophomena 173, 184, 186–7, 189, 202, 210, 228
angulata 211
canalis 166, 210–11, 213*
magnifica 211
glaber 166, 183, 194, 204–5, 207*, 208, 227–8
costata 218
musculosa 218
parva 218
youngi 218
Parastrophinella 202
brenchleyi 166, 216–8, 217*
costata 218
musculosa 218
parva 218
youngi 218
Parastrophinidae 216
Paterula 187–8, 196, 203, 207*, 228
Paterulidae 202–3
Paucicrura 229
Pentamerida 205, 216–8
Pen-y-Cefn-Coch 178, 185, 194–6, 220
Phillipsinella 188, 202, 220, 221*
Phillipsinellidae 220
Pholadomyoida 224
Pistyll Gwyn 188, 190, 196, 199, 223, 228
Platylichas 173, 178, 184–7
Platytophypha 173, 178, 184–7, 189, 228–9
Plectambonitacea 210
Plectorthidae 209
Pont y Ceuant 183–4, 196, 198
Porambonitacea 216
Praenucula 223
Prasopora 180, 187
Prasoporidae 175–9, 182, 184–6, 189
Primaspis 185
Primitia 172, 187
Productorthisa 206
Proetidae 222
Protaster salteri 226
Protozoga 186–8, 196, 202, 218, 228
diversa 218
musculosa 166, 217*, 218
perplexa 218
rotunda 218
Pseudolinguula 186, 203, 207*
Psilonychia 224
Rafinesquina 229
ramose bryozoa 175–80, 182, 184–7, 189
Raphiophoridae 222
Ressereilla 229
Reuschella 176–80, 182, 184–7, 189–90, 193, 195–7, 227–8
horderleyensis undulata 194
Rhactorthis 178, 184–9, 196, 209
crassa 207*, 209
Rostricellula 179–80, 182, 229
Salopia 173, 175–6, 184–7, 197, 206, 207*, 210, 228
Seelya 226
Sericoida 169–70, 173, 176, 178, 180, 182–8, 190–1, 193–5, 199–200, 202, 211–5, 228–9
abditia complacata 166, 196, 208, 212–5, 213*
restricta 212
Sinuites 172, 180, 182, 184, 187–8, 190, 194, 224, 226
Skenidoides 178–9, 184–7, 189, 195–6, 227–8
Souldeyan 205, 210, 224, 227
sericea permixta 197
Sowerbyellidae 211–15
Sowerbyellinae 221
Sphaerocoryphe 188, 196, 202, 221*, 222
Spiriferida 205, 218
Spiriferide, gen. indet. 220, 221*
Stelleroidea 226
Stenaster obtusus 225*, 226*
Stenasteridae 226
Stenurida 226
Strophomena 229
Strophomenida 205, 210–11
Syntrophilida 216
Tallinnella 172, 176, 180, 184–7, 196
Tan y Bwlch 184–5, 188, 195–6, 219
Tentaculites 172, 184–5, 187
Trilobita 167, 172, 180, 184–5, 187, 190, 202, 220, 222
Triplesiacea 210
Triplesia 210
delliana 210
maccayoana 210
Triplesiidae 210
Triplesiidina 210
Ty-nant 175, 177–8, 183, 226
Upper Bala Group 188
Upper Llanvirn 210
Vlasta 224
Y Ceunant 188, 190, 228

Accepted for publication 19 June 1979