
j 

* 

ts F 

‘ 

F) 

hie 

; 

< 

ate 

pte 

eee 

see 

ted 

hi 

1 

, 

ey 

és 

ea 

ere 

: 

Aa 

j 

a 

bes 

bf 

d-tiy 

deen 

Mabie 

: 

ig 

elenasianee 

: 

: 

Gorbhibtete 

Sohe 

: 

the 

5 

ne 

ite 

‘ 

iste 

Hehe 

barers 

“ie 

be 

athtes 

+ 

Rig 

“art 

. 

a 

i 

; 

% 

‘eo 

$F 

EOE 

pag 

wen 

a 

5 

Paves 

yad 

5 

: 

. 

r 

; 

‘ 

pte 

cll 

Ce: 

She 
eo 

iE 

7 

$ 

d 

‘ 

: 

e 

Net 

ote 

: 

: 

+ 

a 

fe 

Sete? 

hee 

Fess 

tote 

yrets 

MAHAL 

Rit 

. 

se 

‘ 

: 

e 

Mo 

oe 

: 

atta: 

J 

ef 

: 

tia 

% 

? 

SOMO 

WP 

Oy 

eh 
eat 
tale 

. 

P 

; 

i 

th 

; 

s 

Moda 

; 

Mk 

Pete 

far 

sagen ie 

e 
ietetas 

r
e
t
e
 

r
a
a
t
 

Sink i
d
e
,
 

S
t
h
 

Sede 
tates 

ee nieentet 
mig ty 

Bi 
e
P
e
d
i
 re
 Sher 

w 
le! 

9
6
 

PO 
Sole 

peggy 
oF 

t
t
 

G
E
 

pt
e 

oe 
Te
re
 

he ee 

Sate 

ese 

PE 
wit 

ateisiy 
eating 

re 

ede) 

iv" 

S
l
a
y
 

w
e
 R
é
b
i
e
t
b
e
l
 

o
e
 

e
n
e
 

* 
*
 

c
a
b
 

Me
a,
 

h
a
k
 

4 
ee
ct
 

hak
 

a 
e
v
 

B
e
b
e
 

eh
gt
et
ht
 

I
N
T
 

S
e
l
e
 

te
te

 
; 

: 
: 

Y 
: 

hu
h 

i 
4 

h
e
 

, 
e
a
 

4
:
4
 

Ho
ig
it
tg
r 

siesta 
pher

etat
hsgt

 
aes

 
| 

se
 

sa
t 

a
c
t
 

4 er
y 

la
te

rs
 

pie 6) 

f
a
v
e
 i
e
’
g
 

.
 o
e
s
 

a
!
 

e
a
e
 

er
el
er
e!
 

F gis
hat

ete
ncT

yta
tel

ete
d 

a 
Lt

 
i 

e
e
t
 

te
 

wa
le

 
te

ty
 

ot
e 

; 
tf
 

t
i
t
i
 

M
o
r
a
r
 

i
b
 

B
3
0
 

tr: 
o
e
r
 

LLY 
aii elobeielelyrawe 

stervtatyipl nyse vir 
| 

redate 
sgatete ah 8 tai vte cy en's 

MASA LG Hh 

Y Ofeltgt 



OO 
S
e
 

ch
y 

re
 







Ue. CDR VE Cf han 



ma eens 
Ee eis Kk 



HIGHER PLANE CURVHS. 





A TREATISE 

ON THE 

HIGHER PLANE CURVES: 

INTENDED AS A SEQUEL 

TO 

A TREATISE ON CONIC SECTIONS. 

BY 

GEORGE SALMON, D.D., D.C.L., LL.D., F.BS., 
REGIUS PROFESSOR OF DIVINITY IN THE UNIVERSITY OF DUBLIN. 

THIRD EDITION. 

Dublin : 
HODGES, FOSTER, AND FIGGIS, GRAFTON STREET, 

BOOKSELLERS TO THE UNIVERSITY. 

MDCOCLXXIX, 



fapagua? cae 
stages. 

i 
¥ 

ae _ CAMBRIDGE: | 
PRINTED BY W, METCALFE AND SON, TRINITY STREET, ee: 



PREFACE TO THE SECOND EDITION. 

Tae first edition of this treatise has been for 

several years out of print, and I had for sometime 

given up the idea of reprinting it. The work, having 

been written at a time when the Modern Higher 

Algebra was still in its infancy, required extensive 

alterations in order to bring it up to the present 

state of the science; and, as I had failed to bring out 

a new edition before my appointment to the office 

which I now hold, I judged it impossible to do so, 

now that other engagements left me no leisure to 

make acquaintance with recent mathematical dis- 

coveries, or even to keep up my memory of what 

I had previously known. When, however, years 

passed and mine still remained the only work in 

English professing to give a systematic account of 

the modern theory of curves, I began to consider 

whether republication might not be possible, if I 

could obtain the assistance of some younger mathe- 
b 
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matician competent to contribute additional sections 

representing the later progress of the science. 

Consulting Professor Cayley on this subject I was 

much and agreeably surprised by his offering himself 

to give me the help I required. It is needless to 

say how gladly I embraced a proposal calculated 

to add so much to the value of my book; and the 

only scruple I have felt in profiting by it is lest 

the time and labour which Professor Cayley has 

devoted to the work of another may, for a time 

at least, have deprived the mathematical world 

of a better work on the same subject by himself. 

My original plan for the division of the labour was 

that Professor Cayley should contribute certain new 

sections or chapters, of which he should take the 

entire responsibility, while I should content myself 

with revising the older part of the book; and 

accordingly the first chapter is entirely Professor 

Cayley’s. But I found it would be impossible in 

this method to give the book the unity it ought to 

possess; and actually our work has been combined 

in a manner that makes it not easy to separate 

our respective shares. Professor Cayley has carefully 

gone over the whole, and there is scarcely a page 

that has not in some way been influenced by his 

suggestions; on the other hand, I have completely 

re-written many of his contributions either for the 
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purpose of making them fit in better with the rest 

of the book, or if I thought I could make some 

simplification in his process or some addition to 

his results. I have in fact dealt in the same 

manner with*some of the manuscript materials which 

he was so good as to place at my disposal, as I 

have done with published memoirs of his, the results 

of which I have incorporated in the work. On 

looking through the pages the parts which I re- 

cognize as taken from Professor Cayley, with but 

‘slight or with no alteration, are Chap. I.; the account 

of the forms of triple points, Art. 40; Art. 47, 

the view taken in which I have not myself in 

other places fully accepted; Ex. 6, p. 48; and Arts. 

56—58, 87—89, 138, 189, 151, 198, 243, 270, 
282—291, 407, 408. Besides these I have worked 

into Chap. III. a manuscript of his on envelopes, 

including the theory of evolutes and quasi-evolutes 

and .of parallel curves; from another manuscript 

of his I obtained my knowledge of Sylvester’s 

theory of residuation; and I have used one on 

the classification of quartics and one on the bi- 

tangents of quartics. The additions made to the 

chapter in the former edition on the transformation 

of curves are almost entirely derived from a manv- 

script of Professor Cayley’s, from which Arts. 370 

to the end are taken nearly without alteration ; 
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Arts. 401—406 are founded on a manuscript of his 

on Steiner’s theory of polar curves. | 

The first edition of this work contained a chapter 

on the application of the Integral Calculus to the 

theory of curves; this I have now omitted principally 

on account of the extension which this subject has 

since received. Such a chapter now, in order 

to have any pretensions to completeness, ought to 

contain an account of the applications which the 

lamented Clebsch, in continuation of Riemann’s 

researches, made of elliptic and Abelian integrals 

to the theory of curves. But it seems impossible 

that those subjects could be. done justice to, except 

in a work having the Integral Calculus as its main 

object; and as such works ordinarily contain chapters 

on the theory of curves, I have thought that this 

branch of the theory might safely be omitted from 

the present treatise. 

The causes which delayed the publication of 

the Second Edition have also retarded the issue 

of this Third, and have prevented me from doing 

all that might be desired in the way of including 
recent investigations. My friend Mr. Cathcart, to 
whose help in correcting the press on this as on 

former occasions I am greatly indebted, had called 
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my attention while the printing was in progress 

to various points which needed fuller treatment. 

These I had hoped to deal with in an Appendix 

at the end, but all I have found time to do has. 

reduced itself to the addition of a few references. 

Professor Cayley, it will be observed, has kindly 

given me one or two new contributions. 

TRINITY COLLEGE, DUBLIN, 

July, 1879. 
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HIGHER PLANE CURVES. 

CHAPTER L* 

COORDINATES. 

POINT-€OORDINATES. 

1. We have in the plane a special line, the line infinity ; 
and on this line two special (imaginary) points, the circular 
points at infinity. A geometrical theorem has either no re- 
lation to the special line and points, and it is then descriptive ; 
or it has a relation to them, and it is then meérical. 

2. The coordinates used for determining the position of 
a point in the plane are Cartesian (rectangular or oblique} 

or else trilinear; the latter, however, including as a particular 
ease the former. Speaking generally we may say that the 

Cartesian (rectangular) coordinates are best adapted for the 
discussion of metrical properties; trilinear coordinates for that 
of descriptive properties; but for metrical properties there is 
often great convenience in using the notation of trilinear 
coordinates, the equation of a curve being presented as a 
homogeneous equation in (a, y, z), where a, y are ordinary 
rectangular coordinates, and z is = 1. 

It is proper to consider in some detail the theory of the 
foregoing kinds of coordinates, . 

3. As defined Conics, Art. 62, the trilinear coordinates of a 
point are its perpendicular distances (p, q, 7) from three given 
lines: it is assumed that the lines form a triangle (viz. that 

* This chapter is by Professor Cayley. 
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no two of them are parallel), and then if (a, d, c) are the sides 
of this triangle, and A its area, and if, moreover, the co- 
ordinates (p, 9,7) are taken to be positive for a point within 

the triangle, the coordinates p, g, 7 satisfy the relation (Conics, 

Art. 63) 
ap+bq+er=2A. 

By means of this relation, an equation, not originally homo- 
geneous, can be made homogeneous; and it is always assumed 

that this has been done, and, in fact, the equations made use of 
are always homogeneous. 

4, But a more general definition of trilinear coordinates 
is advantageous; viz., without in anywise fixing the absolute 

magnitudes of the coordinates (x, y, z), we may take them to 

be proportional to given multiples (ap, Bq, yr) of the original 

trilinear coordinates (p, q, 7). 
Observing that the distance measured in a given direction 

is a given multiple of the perpendicular distance of a point from 

a line, the definition may be stated with equivalent generality 
in several forms as follows: the trilinear coordinates (a, y, 2) 
of a point in the plane are proportional to 

given multiples of the perpendicular distances— 
given multiples of the distances measured in given direc- 

tions— 

given multiples of the distances measured in one and the 
same given direction— 

the distances measured in given directions— 

of the point from three given lines. 

The three given lines, say the lines x=0, y=0, z=0, are — 
said to be the axes of coordinates, or simply the axes; and the 
triangle formed by them, the fundamental triangle, or simply the 
triangle. 

Observe that while the quantities (a, y, z) remain indeter- 
minate as regards absolute magnitude, there can be no identical 

relation connecting them; and the equations which we use, 

being necessarily homogeneous, express relations between the 
mutual ratios of the coordinates. 
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5. It is not in general desirable to do so, but we may, 
if we please, fix the absolute magnitudes of the coordinates, 
and say (x, y, 2) are equal to (ap, Sq, yr) respectively; the 

coordinates are in this case connected by the relation 

| a” B 
which relation serves to determine the absolute magnitudes of 

the coordinates (a, y, z) of any particular point when their 

ratios are known. 
It is scarcely necessary to remark that the distance of a 

point from a line is considered to change its sign as the point 

passes from one to the other side of the line. The selection 

of the positive and negative sides might be made at pleasure 

for each of the three lines, but it is in general convenient to 

fix them in suchwise that for a point within the triangle 
the ratios (x: y: 2), or (when these are determinate in absolute 
magnitude) the coordinates (a, y, 2), shall be positive. | 

6. Taking the lines x =0, y=0, 2=0 to be given lines, the 
values of the ratios x: y: 2 depend upon those of the implicit 

constants a, 8, y, and are thus not as yet completely defined; 
but we can fix them so that for a given point the ratios (a: y : 2) 
shall have given values. Thus, if for the given point whose 

perpendicular distances are p,, ¢,, 7, the ratios are to have the 

given values 2,:y,:2,, this completes the determination of 
the coordinates, viz., we have 

beats We Shs eae 
oo pe 4 Cie 

Again, what is nearly the same thing, we can choose our co- 
ordinates so that a given linear equation Ax + By+Cz=0 
shall represent a given line. In fact, if the equation of the 

given line in terms of the coordinates (p, g, r) is ap + bg +er = 0, 
then we have thus the determination 

: a b Cc 
B:yie= Api agi ar. 

r. 

_It is not in general desirable to make any use of the equations 

just written down; the convenient course is to consider the 



4 POINT-COORDINATES. 

coordinates to have been fixed in ‘suchwise that the point 

(1: 1:1) shall be a given point of the figure, or that the line _ 

x2+y+z=0 shall be a given line of the figure. 

7. It is to be observed that we may properly speak of the 

point (a,/8, y), meaning thereby the point, the coordinates of 

which have the mutual ratios 7: y: 2 equal toa: @8:y. And 

when we speak of the coordinates of a point as being (a, 8, 1), 

or of (x, y, z) as being equal to (a, 8, y), we mean the same 

thing ; that is to say, we only assert the equality of ratios, for 

the very reason that the absolute magnitudes are indeterminate. 

Thus, in the last paragraph, instead of the point (1:1: 1), 

we might have spoken of the point (1, 1, 1). 

8. The point (J, 1,1) and line x+y+2=0 (or generally 

the point (a, 8, y) and line ~ + 5 + —=0) stand in a well- 

known geometrical relation to the fundamental triangle, viz. 
if the point be O, the line 
will be ZMN which joins 
the intersections with the 
sides of the fundamental 
triangle ABC of the cor- 

_ responding sides of the 
triangle DEF formed by 
the points where the lines N A F B 

joining O to the vertices of the fundamental triangle meet the 

opposite sides; or, conversely, if the line LIZN is given, we 
geometrically construct the point O by joining the points L, 
M, N where the line intersects the sides of the fundamental 
triangle to the opposite vertices of that triangle; the joining 
lines form a new triangle, and the lines joining its vertices to 
the corresponding vertices of the fundamental triangle meet in 

the point O. The line and point are in fact “ harmonics,” or, 
as will be hereafter explained, they are “pole and polar” in 

regard to the triangle considered as a cubic curve, or we may 
say simply in regard to the triangle. ‘Thus, if either the point 

or the line be given, the other is known, and it is the same 
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thing whether we assume the point 4, 1,1) to bea Bie point, 
or the line x+y¥+2=0 to be a given bie: 

Considering the line «c+ y+2=0 as a given line, we 
have in all four given lines, and writing for convenience 

x+y+z2+w=0 (that is, considering w as standing for —x—y—2), 
the determination of the coordinates is such that «=0, oe 0, 

2=(0, w=0 are given lines. 

9, The coordinates may be such that the point (1, 1, 1) . 
shall be the centre of gravity of the triangle; or, what is the 
same thing, that the line 2+ y+2=0 shall be the line infinity. 
Reverting to the equation ap+bg+cr=2A, this comes to 
assuming «:y:z=ap:bq:cr; viz. if we join the point to 
the three vertices, so dividing the fundamental triangle into 

_ three triangles, then the coordinates x, y, 2 are proportional to 
the three component triangles (or, what is the same thing, each ~ 

coordinate is proportional to the perpendicular distance from 
a side, divided by the perpendicular distance of the opposite 
vertex from the same side). And it may be noticed that if, 
fixing the absolute magnitudes of the coordinates, we assume 

ap bq or 
2, y, 2= oe, 2A? 2A? 

that is, take x, y, 2 to be equal to the component triangles, each 

divided by the fundamental triangle; then the relation satisfied 
by the coordinates will be ~+y+z2=1. 

10. A particular case is when the fundamental triangle is 

equilateral ; here if x, y, 2 be proportional to the perpendicular 
distances from the sides, (1, 1, 1) is the centre of the figure, 

and x+y+2z=0 is the line infinity; if, fixing the absolute 
magnitudes, we take (a, y, z) to be equal to the perpendicular 
distances, and moreover take as unity the perpendicular distance 
of a vertex from the opposite side, then the coordinates of the 

centre of the figure are (4, 4, 4), and the relation between the 
coordinates is a+ y+2=1. = 

In this case, where the fundamental triangle is equilateral 
and «+y+2=0 the line infinity, the coordinates of the cir- 
cular points at infinity are 7: y:z2=1:@:° and 1: *: a, 
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where » is an imaginary cube root of unity; in fact, taking 

X, Y as Cartesian (rectangular) coordinates, the origin being 
at the vertex (c=0, y=0) of the triangle, and the coordinate 

X being along the side «=0, we have 

X/3-Y 2-X/3-Y 

2 : 2 
L,Y; 2=Y, respectively. 

But for the circular points at infinity X and Y are infinite and 
X+tY=0 (where ¢=/(- 1), as usual) ; wherefore 

—147173 —117¥3 
e:yi:2z=1: 9 : 9 ’ 

—1-73 
2 

Meise: ys sel: ws or H82 wo 2 w. 

—14+7/38 
2 ’] or taking w to be = , and therefore w* = 

11. Let one of the axes, say that of z, be the line infinity : 
the distance r has here the value 0, which must be regarded 
as an infinite constant; yr is therefore a constant, which may 

be made finite, and without loss of generality put =1; we 

have therefore x: y¥: z=ap: 8q:1, where the coefficients a, 8 . 
may be so determined that ap, 8q shall represent the dis- 
tances from the line «=0 and from the line y=0, each 

measured in the direction parallel to the other of these lines; 
that is, if X, Y are the Cartesian coordinates of the point, 
then a2: y:z2=Y:X:1; or, what is the same thing, fixing 
the absolute magnitudes of the coordinates, z, y and z=1, will 

be the Cartesian coordinates of the point referred to any two 
axes of coordinates. : 

12. In what just precedes we have used only the line 
infinity, not the circular points at infinity; and the resulting 
Cartesian coordinates are in general oblique, but they may 

be rectangular; viz. taking the lines x=0, y=0 as any two 
lines harmonically related to the circular points at infinity; or, 
what is the same ‘thing, at right angles to each other, then the 
coordinates will be rectangular. The harmonic relation re- 
ferred to is that the two lines meet the line infinity in a pair 
of points forming with the circular points at infinity a range 
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of four harmonic points; or, what is the same thing, the two 
lines and the lines from their intersection to the circular points 

at infinity form a harmonic pencil. (See Conics, Art. 356). 

13. It is in some cases convenient to use the imaginary 
coordinates §=a2+ ty, n=a—ty, and z=1: these may be 

called circular coordinates. 

CIRCULAR POINTS AT INFINITY. 

14. Fora given system of trilinear coordinates, the coordi- 
nates of the circular points at infinity may be obtained as. 

follows. Suppose, first, that the coordinates w, y, z denote the 
perpendicular distances from the sides of the fundamental 

triangle; then taking an arbitrary origin O and system of 

rectangular axes OX, OY, if p, g, 7 are the perpendicular dis- 

tances of O from the sides of the triangle, and A, pw, v the 
inclinations of these distances to the axis OX, the relations 

between the two sets of coordinates (a, y, z) and (X, Y), are 

e=X cosrX4+Y sind—p, 

y= X coswt+Y sinu —4q, 

z=X cosy + Y sinv —r. 

Write for shortness cosA+7 sind, cosu+7 sing, cosy+7 siny 
(or e, cu, cv) = L, M, N respectively; then taking X and Y 
infinite, and X+7Y=0, we have for the two circular points 
respectively 

gory ase 
eiy:e=L: M:N and eiyie=FTiggin: 

Writing A, B, C for the angles of the fundamental triangle, we 

have between A, B, Cand X, p, v a set of relations such as 

A= wr+p-y, 

B=-aTwW+v—-N2X, 

C= Tt+rA-y, 

and hence writing cosA +7 sin A, cosB+7 sin B, cosC +7 sinC 
(or e4, ¢3, e'°) =a, B, y respectively, we find 

M N L 
detersns * B=- Acie 7 &, aBy=—1, 
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and the coordinates of the circular points at infinity are thus 

1 | 1 
Z:y:2=-—1: —: and z:y:z=-—1: 25 y y B ) y Y B ] 

1 1 
= ys =: = = ‘s oo 2 

1 1 
pty eae =P. 

the three expressions for each set of coordinates being of course 

identical in virtue of the relation a@y = - 1. 
The same formule obviously apply to the case where the 

coordinates x, y, 2, instead of being equal, are only proportional 

to the perpendicular distances from the sides of the triangle ; 
and they are thus the formule belonging to the system of 

coordinates for which the equation to the line infinity is 

«sin A+y sinB+zcosC=0. 

15. It may be added, that the original system of relations 

between a, y, 2 and X, Y, gives 

(y +49) & + ie sin A + (2+7) (a+p) sinB+ (x+p)(y+q) sind — 

=sinAd sinB sinC(X’?+Y”), 

or, what is the same thing, we have 

yz sinA+2e snB+ay snC=sind sinB sinC (X*+ Y") 

+ linear function of X, Y, 1, 

viz. the equation yz sinA + zx sinB+ ay sinC=0 is the equa- 
tion of a circle, and this being so, it is obviously the equation 

of the circle circumscribed about the fundamental triangle; 
and the formula holds good in the case where 2, y, z are 
proportional to the perpendicular distances; the circular points 
at infinity are therefore the intersections of the circle 

yz snA+ze sn B+ zy sinC=0, 

by the line infinity 

xsinA+ysinB+z2sinC=0, : 

(compare Conics, Art. 359), and it is easy to verify that the fore- 
going expressions of the coordinates of the circular points at 



LINE-COORDINATES. 9 

infinity in fact satisfy these two equations. It is to be re- 
marked also, that the general equation of a circle is 

(yz sin.A + ze sinB+ ay sinC) 

+ (Px+Qy+ Rz) (x sin 4 +y sinB+z sinC)=0, 

where P, Q, FR are arbitrary coefficients. 

16. In the system of coordinates wherein a, y, 2 are pro- 

portional to the perpendicular distances, each multiplied by the 
corresponding side, or where the equation of the line infinity is 

2+y+2z=0, we have only in place of the foregoing a, y, 2 
x y ee 

to write dt ae ant? 

points are therefore given by 

the coordinates of the circular 

A es eS ary Le B 
sinA’sinB’ sinC ee 

1 
= vy -—1: a 

1 
“= 3 * ask, 

Mo Pe Gt pale 
a sind‘ sinB* sinC ree a 

1 

1 = er oO ? 

and the general equation of a circle is 

(yz sin’ A + zx sin’ B+ xy sin’C) + (Px + Qy + Rz)(a@+y + 2) =0. 

LINE-COORDINATES. 

17. The coordinates above considered are coordinates for 
determining the position of a point; say they are point- 
coordinates. We have also line-coordinates (tangential co- 
ordinates, see Conics, Art. 70) for determining the position of 
a line; viz. if with any given system of trilinear coordinates 

(x, y, 2), the equation of the line is e+ny+€z=0, then 
we have a corresponding system of line-coordinates, wherein 

C 
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(£, 7, £) are said to be the coordinates (line-coordinates) of 

the line in question. Observe that according to this definition 

(E, n, ¢) are given as to their ratios only, their absolute magni- 

tudes are indeterminate; herein resembling point-coordinates 

according to their most general definition. 

18. The coordinates (&, 7, €) belong to a line; a linear 

equation a&+bn+cf=0 between these coordinates refers to 

the whole series of lines, the coordinates of any one of which 

satisfy this equation; but all these lines pass through a point, 
viz. the point whose coordinates in the corresponding system 
of point-coordinates (x, y, 2) are (a, b,c); the linear equation 

af +bn+cC=0 in fact expresses that the equation in point- 
coordinates a + ny + Cz =0 issatisfied on writing therein (a, 6, e) 
for (x, y,2). The conclusion is, that in the line-coordinates 
(£, m, €), the equation a+ 6yn+c§=0 represents a point, viz. 
the point whose trilinear coordinates in the corresponding 
system are (a, b,c). And, generally, any homogeneous equa- 
tion in the line-coordinates (£, », €) represents the curve which 

is the envelope of all the lines && + yy + ¢=0, which are such 

that the coefficients (&, , €) satisfy the relation in question; 

and this relation is said to be the line- or tangential equation 
of this envelope; in other words, the line-equation of a curve 

is the equation between (&, 7, ), which expresses that the line 

Ea +ny + &=0 is a tangent to the curve. 

19. In what precedes the line-coordinates (&, 9, €) are 

defined by means of a corresponding system of trilinear co- 
ordinates (x, y, 2), the signification of the ratios &: 1: ¢ being 

thereby in effect completely determined. This is the most con- 

venient course; but, not so much for any application thereof, 
as in order to more fully establish the analogy between the 
two kinds of coordinates, it is proper to give an independent 

quantitative definition of line-coordinates. We may say that 
the trilinear coordinates (&, 7, €) of a line are proportional 
to given multiples of the distances measured in given directions 

of the line from three given points. Suppose, to fix the ideas, 
we take them proportional to the perpendicular distances of 

the line from the three given points. If referring the figure 
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to Cartesian coordinates, the coordinates of the points are 
(a, 8), (a’, 8’), (a”, 8"), and the equation of the line is 

AX+BY+C=0, 
then we have 

E:n:€=Aa+BB+C: Aa’ + BE'+C: Aa” + BB" 4+C, 

or, what is thesame thing, the equation of the line is 

Ay Sp lets 

&, a, By 1 

n, a, B, 1 
c a ge 1 

the coefficients of £, , € are here given linear functions of 

(X, Y, 1), and denoting these coefficients by (a, y, z) we shall 
have (x, y, z) a system of trilinear coordinates, and the equation 
will be &e+ ny + &=0; the definition thus agrees with the one 

given above. 
We may in like manner, as in Art. 6, determine the line- 

coordinates (£, 7, €), so that the line (1: 1:1) shall be a givén 
line of the figure, or that the point €+7+¢=0 shall be a 

given point of the figure. 

20. Some particular systems may be mentioned. Let a, B, y 
denote respectively the distances Cc 
in a given direction of the vari- 
able line from the points A, B, 
C, viz. (a= Aa, B= Bb, y=Co); 
then the coordinates &, 7, € may 
be taken proportional to these 
distances, £:97:€=a:8:¥. @ S c 

Imagine the point C to move off to infinity in the given 

direction; y has an infinite value which must be regarded as 

a constant ; and writing &: 7: : =a:B:1, we may, instead 

of the original coordinates, &, 7, €, take as coordinates &, 7, 2 ; 

that is, a, 8, 1. We have here a system of two coordinates 

a, 8, which are respectively equal to the distances in a giver 
direction of the line from two fixed points. 
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21. Again, in the annexed figure we have 

oe) ee ta B 

y Cp?y Cy’ 
or, what is the same thing, 

oe ee 
Ap’ Ba’ * Gp’ Cq 

Imagine A, B to go off to infinity 
in the given directions pC, gC re- 

spectively; Ap, Bg have infinite g P 
values which must be regarded as constants; and instead of 

coordinates proportional to a, 8, y, we may take coordinates 

. C 

roportional to —~ Lids y; that is, we may take as co- prop Ap’ Bq j ’ 'Y 

ici et 
ordinates —- 1; we have thus a system of two coordinates, Cp ’ Cy ’ 

which are respectively the reciprocals of the distances in two 

given directions of the line from a fixed point. 

22. There is little occasion for any explicit use of line- 
coordinates, but the theory is very important; it serves in 
fact to show that in demonstrating by point-coordinates any 
descriptive theorem whatever, we demonstrate the correlative 
theorem deducible from it by the theory of reciprocal polars 
(or that of geometrical duality), viz. we do not demonstrate 
the first theorem and deduce from it the other, but we do 
at one and the same time demonstrate the two theorems; 
our (x, y, 2) instead of meaning point-coordinates may mean 

line-coordinates, and the demonstration is in every step thereof 

a demonstration of the correlative theorem, | | 

23. And in like manner when any theorem is demonstrated 

by line-coordinates, this is also a demonstration of the corre- 
lative theorem; the only difference is that we here pass from the 
somewhat less familiar theory of line-coordinates to the more 
familiar one of point-coordinates; the transition is rendered 
clearer if we consider the original line-coordinates (&, 9, ¢) as 
being the point-coordinates of the point which is the pole of 

the line in regard to the conic 2+ y°+ 2° =0. 



y CHAPTER IL 

ON THE GENERAL PROPERTIES OF CURVES OF THE n't DEGREE. 

SECT. I.—ON THE NUMBER OF TERMS IN THE GENERAL EQUATION. 

24. The first step towards obtaining a knowledge of the 
general properties of curves of the n™ degree is the ascertaining 

the number of terms in the general equation. We should thereby 
be enabled, on being given any equation of the n™ degree, 

by simply counting the number of independent constants in the 
equation, to know whether or not the given form were one to 
which all equations of the n™ degree could be reduced. For 
example, the general equation of the second degree contains 
five independent constants.. If, then, we were given any other 
equation of the second degree, containing five constants, for 
instance, 

(w—a)' + (y—B)'= (ax + by + ¢)", 
or i(w—a)'+ (y—B)'}¥ + (e—a)'+ (y—-BY}=«, 
we could expand, and comparing the equation (as at Conics, 
Art. 77) with the general equation of the second degree, should 

obtain a sufficient number of equations to determine a, 8, &c., 
in terms of the coefficients of the general equation. We see, 
then, that any equation of the second degree may, in general, 
be reduced to either of the above forms, and we might thus 

obtain a proof of the properties of the foci and of the directrix. 
The equation 

(ax + by +c)’ = (au + b'y 4c’) (a"a + b"y +c") 

contains seven independent constants. ‘The problem, therefore, 

to express these in terms of the coefficients in the general 
equation is indeterminate, as is also geometrically evident, 
since the equation may be thrown into this form by taking 

axt+ by +e, aa + "y+e" 
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to represent any two tangents, and az+by+e their chord of 

contact. The equations 

(ax + by) =cu+ dy+e, 

(ax + by +1) (vx + 'y +1) =90, 

contain each but four independent constants, and must, therefore, 
implicitly involve one other condition; or, in other words, the 
general equation cannot be thrown into either of these forms, 
unless one other condition be fulfilled. This is geometrically 
‘evident, since the first equation denotes a parabola and the 

second two right lines. The general equation of a circle, 

(w—a)'+(y—-By =", 
containing but three expressed constants, must implicity involve 

- two conditions, or the general equation cannot be thrown into 
this form unless two conditions be fulfilled. And so, again, 
the equation 

S—kS'=0, 

(where S, S’ are given quadric functions of the coordinates) 
containing but one expressed constant must imply four con- 
ditions; as we otherwise know, sitce the conic expressed by 
this equation passes through four fixed points. 

25. Some caution must be used in the application of these 
principles. Thus, the equation 

(w—a)’?+(y—B8)*=ax+by+e 

appears to contain five constants, and, therefore, to be a form to 
which every equation of the second degree is reducible. But 
if we expand, we shall see that the constants do not enter into 
the highest terms of the equation, and that there are but three 
equations available to determine a, 8, &c. The equation can, 
therefore, not be thrown into this form unless two other con- 
ditions be fulfilled. In like manner, the equation 

aS,+08,+c¢S,+d8S,+ eS,+fS,=0, 

where S,, &c., are six conics, is a form to which the equation 
of any conic may be reduced; but suppose three of the equations 
of these conics to be connected by the relation S,=4S,+/8,; 
substituting this value, the equation would be found to contain 
but four independent constants, and the general equation could 
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not be reduced to this form unless some one condition were 

fulfilled. 

26. Having thus endeavoured to give the reader an idea of 
the nature of the advantage to be gained by a knowledge of 

the number of terms in the general equation of the n™ degree, 
we proceed to dn investigation of this problem. The general 

equation of the x degree between two variables may be written, 

A 

+ Be +Cy 

+ Da’ + Exy + Fy’ 

+ Pa* + Qa" y +...4+ Ray" + Sy" =0. 

And the number of terms in this equation is plainly the sum 

of the series 1+2+4+34...4(n+4+ 1), and is therefore equal to 
4 (n+ 1) (n+ 2), as has been already proved (Conics, Art. 78). 

We shall sometimes write the general equation in the 
abbreviated form, 

U+tU,+tUz+.--+ U, =), 

where uw, denotes the absolute term, and u,, w,, u,, &c., denote 

the terms of the first, second, n“, &c., degrees in # and y. 

We shall also sometimes employ the equation in trilinear 
coordinates, which only differs from that just written in having 

a third variable 2 introduced, so as to make the equation homo- 
geneous, ViZ., 

Uz +ue +u ze +...4-u,2+4u,=0. 

The number of terms is evidently the same as in the preceding 
case (Conics, Art. 289). 

27. The number of conditions necessary to determine a 

curve of the n degree is one less than the number of terms 
in the general equation, or is equal to 4n(n43). For the 

equation represents the same curve if it be multiplied or divided 
by any constant; we may therefore divide by A, and the curve 
is ‘completely determined if we can determine the 4n (n+3) 

&e, 
We 

quantities eur ©. 
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Thus a curve of the n™ degree is in general determined when 
we are given $n(n+3) points on it; for the coordinates of each 

point through which the curve passes, substituted in the general 
equation, give a linear relation between the coefficients. We 
have, therefore, 4x(n+3) equations of the first degree to 
determine the same number of unknown quantities, a problem 
which admits in general of but one solution. We learn, then, 
that a curve of the third degree can be described through nine 
points, one of the fourth degree through fourteen points, and 
in general through 4n(n+3) points can be described one, and 

but one, curve of the n™ degree. 

28. When we say that 4n(n+3) points determine a curve 
of the x degree, we would not be understood to mean that 

they always determine a proper curve of that degree. All 
that we have proved is, that there exists an equation of the n™ 
degree satisfied for the given poimrts, but this equation may be 

the product of two or more others of lower dimensions. Thus, 
_ five points in general determine a conic, but if three of them 

lie on a right line, the conic is the improper quadric curve 
formed by this right line and the line joining the other two 
points. And, in general, it is evident that, if of the }n(x+3). 
points more than xp lie on a curve of the p™ degree (p being 
less than x), a proper curve of the x degree cannot be described 

through the points, for we should then have the absurdity of 
two curves of the n“ and p™ degrees intersecting in more than 
np points (Conics, Art. 238). The system of the n™ degree through 
such a set of points is the curve of the p™ degree, together with 
a curve of the (n—p)™ degree through the remaining points. 

We may even fix a lower limit to the number of points 
determining a proper curve of the x“ degree which can lie on 
a curve of the p™ degree, and can show that this number 
cannot be greater than np —4( p—1)(p—2). For if we suppose 
that one more of the points (viz. np — 4 (p—1)(p —2)+1) lie 
on a curve of the p™ degree, subtracting this number from 
jn(n+3), it will be found that the number of remaining 
points is } (n—p) (n—p +8), and that, therefore, a curve of the 
(xn —p)™ degree can be described through them. This with the 
curve of the p™ degree forms a system of the n™ degree through 
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the points; and it follows from the last Article that it is in 
general impossible to describe through them any other. 

29. There are cases, however, in which the solution of 
Art. 27 fails: a very simple instance will show that this is so. 

The number of points required for the determination of a cubic 
curve is nine; but nine points do not in every case determine 

a single cubic, for any two cubics intersect in nine points; and 

through these nine points there pass the two cubics; as will 

presently appear, there are in fact through the nine points an 

infinity of cubics. The explanation is that although m linear 

equations are in general sufficient to determine m unknown 

quantities, the equations may be not all of them independent, 
and they will in this case be insufficient for the determination 

of the unknown quantities. The given points are then in- 
sufficient to determine the curve, and through them can be 

described an intinity of curves of the n™ degree. The geo- 
metrical reason why such cases occur requires to be further 

explained. 
Let us, for simplicity, commence with the example of curves 

of the third degree. Let U=0, V=0, be the equations of two 
such curves, both passing through ae given points; then the 

equation of any curve of the third degree passing through these 

points must be of the form U-—kV=0. _ For this equation, 
from its form, denotes a curve of the third degree passing 
through the eight given points, and it contains an arbitrary 
constant & which can be so determined that the curve shall pass 

through any ninth point. We should, in fact, have k=, 

where U’, V’ are the results of substituting the coordinates of the 
ninth point in Uand V. This gives a determinate value for & 

in every case but one, viz. when the ninth point lies on both U 
and V; for since two curves of the m™ and n™ degrees intersect 
in mn points, U and V intersect not only in the eight given 

points, but also in one other. For the coordinates of this poiut 

k takes the value 3 and indeed the form of the equation suffi- 

ciently shows that every curve represented by the equation 
U-kV=0 passes through ail the intersections of U and V. 

D 
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Hence we have the important theorem, All curves of the third 
degree which pass through eight fixed points pass also through 
a ninth. And we perceive that nine points are not always” 
sufficient to determine a curve of the third degree; for we can 

describe a curve of the third degree through the intersections of 
two such curves, and through any tenth point. 

30. The same reasoning applies to curves of any degree. If 
there be given a number of points one less than that which will 

determine the curve {4n(z+3)—1}, then U-kV=0 (where U 
and V are any two particular curves of the system) is the most 

general equation of a curve of the n™ degree passing through 
these points. For the equation contains one arbitrary constant, 

to which we can assign such a value that the curve shall pass 

through any remaining point, and be therefore completely de- 
termined. But the form of the equation shows that the curve 

must pass through all the n” points common to U and J, and 

therefore not only through the 4n(n+3)-—1 given points, but 
also through as many more as will make up the entire number 

to n°. Hence, All curves of the n™ degree which pass through 

gn(n+3)—1 fixed points pass also through 4(n—1)(n— 2) 
other fixed points. 

31. The following is a useful deduction from the preceding 
theorem: If of the n® points of intersection of two curves of the 

n™ degree, np lie on a eurve of the p” degree ( p being less than n), 
the remaining n(n—p) will lie on a eurve of the (n— 5) ae 

degree. For describe a curve of the (n—p)™ degree through 
4(n—p)(n—p+t3) of these remaining points, and this, together 

with the curve of the p degree, form a curve of the n™ degree 

passing through 4 (n—- p) (n—p+3)+ np points; and since this 
number {being equal to $n (n+ 3) -1+4(p—1)(p—2)} cannot 
be less than 4n(n+3)—1, this curve will pass through all the 
remaining points; but, obviously, the remaining points do not any 
of them lie on the curve of the p™ degree, and therefore they 
lie all of them on the curve of the (n — p)™ degree. 

It is to be understood in these theorems concerning the 
intersections of curves of the n™ degree, that the curves need not 
be proper curves of that degree, for the demonstration in Art. 30 
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holds equally even though U or V be resolvable into factors. 
As an illustration of the theorem of this Article, we add the 

following: If a polygon of 2n sides be inscribed in a conic, the 

n(n—2) points, where each odd side intersects the non-adjacent even 
sides, will lie on a curve of the (n—2)" degree. For the product 
of all the odd sides forms one system of the n™ degree, and the 
product of all.the even sides another; these systems intersect 
in 2’ points, viz. since each odd side has two adjacent and n—2 

non-adjacent even sides, in the 2n vertices of the polygon, and 
the n(n—2) points, which are the subject of the present theorem. 
But since, by hypothesis, the 2n vertices lie on a conic, the 

remaining n(x—2) points, by this Article, lie on a curve of 
the (n — 2)” degree. 

32. Pascal’s theorem is a particular case of the theorem just 
given, but on account of the importance that the learner should 

clearly understand the principle of the foregoing demonstrations, 

we think it advisable to repeat in other words the proof already 
given. : 

Denote the sides of the hexagon by the first six letters of 
the alphabet 4=0, &c.; then ACH-ABDF=0 is the equa- 

tion of a system of curves of the third degree passing through 
AB, BC, CD, DE, EF, FA, and also through AD, BE, CF. 
If the first six points lie on a conic S, then the curve of the 

system determined by the condition that it shall pass through 
any seventh point of the conic S must give ACH-k'BDF= SL. 
For it cannot be a proper curve of the third degree, since no 

such curve can have more than six points common with 8. 
The right line Z will therefore contain the three points AD, 
BE, CF. 

We may add, that it is this proof of Pascal’s theorem which 
leads most readily to Steiner’s and Kirkman’s theorems (Contes, 
p- 361). Thus, let 

12.34.56 — 45.61.23 = SZ, 

where 12 denotes the line joining the vertices 1, 2, &c.; and 
where Z consequently denotes the line through the intersections 
of the opposite sides, 12, 45; 34, 61; 56, 235 and let 

12.34.56 - 36.25,14= SM; 
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then, obviously, 

45.61.23 — 36.25.14=S(M- L); 

or the Pascal line indicated by the latter equation passes 
through the intersection of the other two. 

It may, however, be remarked that the theorem of Art. 31, 
in the case in question n = 3, is a particular case of the theorem 

of Art. 30; viz., the system of the three odd sides is one of the 

cubics, and the system of the three even sides the other of the 
cubics U=0, V=0 of Art. 30. And we may deduce Pascal’s 

theorem directly from that theorem; viz., considering the conic 
through the six vertices, and the line joining two of the three 
points of intersection of the opposite sides, the conic and line 
form a cubic through eight of these nine points, and therefore 

through the ninth point; that is, the line passes through the 
remaining one of the three points of intersection of the opposite — 
sides ; viz., these three points lie in a line. j 

33. It has been proved that, although two curves of the 
n” degree intersect in n® points, yet n” points, taken arbitrarily, 

will not be the intersections of two such curves; but that 
n° —4(n—1)(n—2) of them being given, the rest will be deter- 

mined, A similar theorem holds with regard to the np points 

of intersection of two curves of the n and p degrees. Thus, 
though a curve of the third degree intersects one of the fourth 

- in twelve points, yet through twelve points taken arbitrarily 
on a curve of the third degree, it will, in_general, be impossible 

to describe a proper curve of the fourth degree. For the 
system of the fourth degree through these twelve and any 

other two points will, in general, be no other than the curve 
of the third degree and the line joining the two points. And, 
generally, very curve of the n° degree which is drawn through 
np —4(p—1)(p—2) points on a curve of the p® degree (p being 
less than n) meets this curve in 4 (p—1) (p—2) other fixed points. 
For we had occasion in Art. 31 to see that 

np—4(p—1)(p—2)+2(n—p) (n- p+3)=4n(n+8)—1; 
therefore, by Art. 30, every system of the n* degree described 
through the given points, and 4(n—p) (n—p+83) others, passes 
through $(n— 1) (n— 2) other fixed points. But one system of 

a Zon, Qaven kN \, 
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the n‘® degree which can be described through the points is 
the given curve of the p degree and one of the (n—p)™ 
through the additional assumed points. The 4 (n—1)(n—2) 

new points must therefore lie, some on one, some ou the other 

of these two curves. And it is evident that these points must 
be so distributed between them as to make up the total number 

of points, in the first case, to np, in the second to n(n—p). 
Hence the truth of the theorem enunciated is manifest. 

34, A further extension of this theorem has been given by 
Prof. Cayley: ‘ Any curve of the r™ degree (r being greater than 

m or n, but not greater than m+n—3), which passes through all 
but 4 (m+n—r—1) (m+n—r—2) of the mn intersections of two 

curves of the m™ and n™ degree, will pass also through the 

_ remaining intersections.” 
_ The reader will more easily understand the spirit of the 
general proof we are about to give by applying it first to a 
particular example. “Any curve of the fifth degree which 

passes through fifteen of the intersections of two curves of the 
fourth degree will also pass through the remaining intersection.” 
For take two arbitrary points on each of the curves of the 
fourth degree. These four, with the fifteen given points, make 
nineteen points, through which, if several curves of the fifth 

degree pass, they will (by Art. 30) pass through six other fixed 

points. But each curve of the fourth degree, together with 
the line joining the two arbitrary points on the other curve, 

forms a system of the fifth degree through the nineteen points. 
Hence all the intersections of the given curves of the fourth 

degree lie on every curve of the fifth degree through the 

points. Q.E.D. 

So, in general, take 4 (r —m)(r— m+ 3) arbitrary points on 

the curve of the n™ degree, and through them draw a curve of 
the (r—m)™ degree; and take $(7—n) (r—n+3) points on 

the curve of the m‘* degree, and through them draw a curve of 
the (r—n)™ degree; take as many of the mn points of inter- 
section as with the arbitrary points make up $r (7+3)—1; then, 
since the curves of the (7 —m)™ and m‘* degree make one system 

of the r degree through the points, and the curves of the 
(r—n)™ and n make another, the intersection of these two 
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systems will be common to every curve of the 7 degree through 
the points. But 

br (r-+8)—1-4 (r—m) (r— m8) —$ (rn) (r—n +8) =mn-4(m+n—r—1) (m+n—r—29), 
as the reader may verify without difficulty. Hence the truth 
of the theorem appears. ‘To make the proof applicable 7 must 
be at least equal to the greater of m or n; and also r—m 
must be less than n, since otherwise it would not be possible 
to describe, through the assumed points on the curve of the 
n degree, a curve of the (r— m)™ degree, distinct, from or not 

including as part of itself the curve of the n* degree; and, since 
the theorem is nugatory for r=m+n—1 or m+n—2, the 
condition is 7 not greater than m+n —3.* 

SECT. II.—ON THE NATURE OF THE MULTIPLE POINTS AND 

TANGENTS OF CURVES. 

35. The simplest method of introducing to the reader the 

subject of the singular points and lines connected with curves 
seems to be, first, to illustrate by particular examples the nature 

of these points and lines, and afterwards to lay down rules by 
which their existence may be detected in general. 

We shall employ the Cartesian equation given in Art. 26. 

* Euler appears first to have noticed the paradox, that two curves of the n™ degree 

may intersect in a greater number of points than are sufficient to determine such a 

curve (see a Memoir in the Berlin Transactions for 1748, “On an apparent Contra- 

diction in the Theory of Curves”). The same difficulty is pointed out by Cramer, 

in his “Introduction 4 l’Analyse des Lignes courbes algébriques,” published in the 

year 1750. It was only comparatively recently, however, that the important geo- 

metrical theorems were observed, which are derived from this principle. In the year 

1827 M. Gergonne gave the theorem of Art. 31 (Annales, vol. Xv1I., p. 220). The 

general theorem of Art. 80 was given about the same time by M. Pliicker (Entwicke- 
lungen, vol. I., p. 228; and Gergonne’s Annales, vol. X1X., pp. 97, 129). It was some 
years afterwards that the cases were discussed of the relation which exists between 

the points of intersection of curves and surfaces of different degrees (as in Art. 33), 

These cases were discussed in two papers sent at the same time for publication in 

Crelle’s Journal, one by M. Jacobi (vol. Xv., p. 285), the other by M. Pliicker 
(vol. XVI., p.47). Besides the papers just mentioned, the reader may also consult 

a Memoir by Prof. Cayley (Cambridge Math. Journal, vol. 111., p. 211), The historical 

sketch given in the present note is taken from Pliicker’s Zheorie der Algebraischen 
Curven, p. 18. 
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If we transform this equation to polar coordinates, by sub- 
stituting p cos@, p sin@ for « and y (or if the axes be not 
rectangular, mp, np, as at Conics, Art. 136), we get an equation 

of the n™ degree in p, whose roots are the distances from the 
origin of the n points, where the curve is met by a line drawn 

through the origin, making an angle @ with the axis of x. 
4 

36. If in the general equation the absolute term 4 =0, 
then the origin is a point on the curve; for the equation is 

evidently satisfied by the values ~=0, y=0, that is, by the 
coordinates of the origin. 

The same thing appears from the equation expressed in polar 
coordinates, 

| (B cos 0+ C sin@) p+ (D cos’@+ Ecos @ sind + F sin’ 6) p?4+ Ke.=03 

for this equation being divisible by p, one of its roots must be 

p=0, whatever be the value of 6, and therefore one of the 
n points, in which every line drawn through the origin meets 

the curve, will, in this case, coincide with the origin itself. : 

The other (n—1) points will in general be distinct from the 
origin; there is, however, one value of 0, for which a second 
point will coincide with the origin, viz., if @ be such that 

B cos6+ C sind =0. 

The equation then becoming 

(D cos’@ + E sin @ cos @ + F sin’6) p? + Ke. = 0, 

is divisible by p*, and has, therefore, for two of its roots, p=0. 

The line, therefore, answering to this value of 6, meets the 
curve in two coincident points, or is the tangent at the origin. 

Since we have.a simple equation to determine tan@, we see 
that at a given point on a curve there can, in general, be drawn 
but one tangent. Its equation is evidently 

p(B cos0+ Csin@)=0, or Be+ Cy=0. 

Hence tf the equation of a curve be u,+u,+&e.=0 (the origin 
being a point on the curve), then u,=0 is the equation of the 
tangent. 

If B=0, the axis of x isa tangent; if C=0, the axis of y. 
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37. Let us now, however, suppose that A, B, C are all =0; 
the coefficients of p will then =0, whatever be the value of 0; 
in this case, therefore, every right line drawn through the origin 

meets the curve in two points which coincide with the origin. 
The origin is then said to be a double point. 

We may see now, exactly as in the last Article, that it is in 

this case possible to draw through the origin lines which meet the 
curve in three coincident points. Tor let @ be such as to render 

the coefficient of p*=0, or D cos*0+ # sin@ cos@+ F'sin’@=0, 

then the equation becomes divisible by p*, and three values of p 
are =(. Since we have a quadratic to determine tan@, it 

follows that there can be drawn through a double point two right 
lines, each of which meets the curve in three coincident points; 
their equation is 

p’ (D cos*@ + E sin @ cos@ + F'sin’@)=0, or Da’ + Exy + Fy’ =0. 

We learn hence that although every line through a double 

point meets the curve in two coincident points, yet there are 

two of these lines which have besides contact (viz., a conse- 
cutive point common) with the curve at that point; so that it 
is usual to say that at a double point on a curve there can be 

drawn two tangents. If the equation of the curve (the origin 

being a double point) be written w,+u,+&c.=0, then u, =0 
is the equation of the pair of tangents at the origin. 

38. It is necessary to distinguish three species of double 
points, according as the lines represented by u,=0 are real, 
imaginary, or coincident. ; 

I. In the first case the tangents are both real; the double 

point or node is such as that represented in the second figure 

(Art. 39) 5 an inspection of the curve shows that there are at the 
node two branches each with its own proper tangent; and the 
foregoing quadratic equation in fact determines the directions of 
these two tangents: such a point is termed a crunode. 

A simple illustration of such double points occurs when the 
given equation is the product of two equations of lower dimen- 
sions, or U= PQ. The equation U=0 then represents the two 
curves denoted by P=0 and Q=0. But if these two be con- 
sidered as making up a complex curve of the n™ degree, this 
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curve must be said to have pg double points (the points, namely, 
where / intersects Q); and at each of these points there are 
evidently two tangents (viz., the tangents to Pand Q). 

II. The equation u,=0 may have both its roots imaginary. 
In this case no real point is consecutive to the origin, which 

is then called a conjugate point or acnode. Its coordinates satisfy 

the equation of the curve, but it does not appear to lie on the 

curve, and, in fact, the existence of such points can only be 
made manifest Rearnettalls by showing that there are points, 

no line through which can meet the curve in more than n—2 
points. 

III. The equation u, may be a perfect square; in this case 
the tangents at the double point coincide, and the curve takes 
the form represented in the fourth figure (Art. 39). Such 

points are called cusps or spinodes. ‘They are also sometimes 
called stationary points; for if we imagine the curve to be 

generated by the motion of a point, at every such cusp the 

motion in one direction is brought to a stop, and is exchanged 
for a motion in the opposite direction. 

The reader might suppose that we could illustrate these 
points, as in the last paragraph, by supposing the curve U to 
break up into two, P and Q, which touch; for ; 
every point of contact will be a double setat the a 

tangents at which coincide. But such a point 
must be classed among singularities of a higher 
order than those which we are now considering ; Naa 
for the tangent has at it four points along 
the complex curve, viz., two on each of the simple curves, 
while at the cusps we are considering we have seen that the 

tangent generally meets the curve in only three consecutive 
points. In order that the tangent at a cusp should meet the 
curve in four consecutive points, it is necessary not merely that 
u, should be a perfect square, but further, that its square root 
should be a factor ‘in u,; that is to say, that the equation should 
be of the form 

0, +vv,+u,+ &e. = 0. 

Such points arise from the union of two double points, as 
the reader will readily perceive from the example which we 

E 
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have already given, for when the curves P and Q touch, the 
point of contact takes the place of two points of intersection. 

It is proper to remark that the crunode and the acnode are 
varieties of the node, and varieties of the same generality, the 
difference being that of real and imaginary. The cusp has in 

the investigation presented itself as a particular case of the 
node, but it is really a distinct singularity; the force of this 
remark will appear in the sequel. 

389. As the learner may probably find some difficulty in 
conceiving the relation of conjugate points to the curve, we 

shall illustrate the subject by the following example. Let us 

take the curve 

y' = (w—a) (wb) (@- ), 
where a is less, and c greater than b. This curve is evidently: 
symmetrical on both sides of the axis of x, since every value of x 
gives equal and opposite values to y. The curve meets the axis 

of x at the three points x=a, x=b, x=c. When =~ is less than 
a, y’ is negative, and therefore y imaginary; y’ becomes positive 

for values of x between a and 8; negative again for values 
between & and c; and, finally, positive for all values of a 
exceeding c. The curve therefore consists of an oval lying 
between A and B, and a branch 
commencing at C, and extending | 

indefinitely beyond it. a - 
Let us now suppose b=c and AINE A Me 

the equation will become 

y' = (x —a) («— by, 
where 4 is greater than a. The point B has now closed up to C3 
as B approaches to C, the oval and infinite branch sharpen out 
towards each other, and when ulti- 
mately the two points are united 
together the oval has joined the in- : B 

finite branch, and the point B has 
become a double point, with branches Fale 
cutting at an angle. 

But, on the other hand, let =a, then the equation 
becomes e 

y' = (x — a)! (x 6), 
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where a is less than be the oval has shrunk into the point A, 
and the curve is of the annexed form. 

This example sufficiently shows the 
analogy between conjugate points and A © 
double points, the tangents at which are 
real. If we suppose a=b=c, the equation becomes y’=(x—a)’, 

the point A beedmes a cusp, as in III. of oe 

last Article, and the tangent at the cusp Bagi et 
meets the curve in three coincident points oat 
A, B,C, 

_ 40. Ifin the general equation A, B, C, D, L, F were all =0, 
then the origin would be a triple point, every line through the 
origin meeting the curve in three coincident points; and it is easy 

to see, as before, that at a triple point there are three tangents, 
which are the three lines represented by the equation u, =0. 

We may also, as before, distinguish four species of triple 
points, according as the three tangents are (a) all three real 
and (1) all three distinct, (2) two coincident, (3) all three co- 
incident, or (b) one real and two imaginary. A triple point 
may be regarded as arising from the union of three double 
points: viz. in the cases (a) these are (1) three crunodes, (2) two 
crunodes and a cusp, (3) a crunode and two cusps; as illustrated 

in the annexed figures, which exhibit the three double points 
as they are about to unite 
into atriple point. The @ (2) 
case (3) scarcely differs 
visibly from an ordinary 

point on the curve, but 
when the figure is drawn accurately there is a certain sharpness 

of bend at the singular point. In the case (b), there is in like 
manner a real branch which comes to pass through an acnode: 
to the eye the singular point does not appear to differ from any 
other point on the curve. 

We may, in like manner, investizate the conditions that the 
origin should be a aiultiple point of any higher degree (4). 
The coefficients of all terms of a degree below & will vanish, 
and the equation will be of the form 

U, + u,,, + Ke. = 0. 

(3) 
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At the multiple point there can be drawn & tangents, represented 
by the equation u,=0; and the nature of the multiple point 

varies according as the roots of this equation are all real and 
unequal, or two or more of them equal or imaginary. 

A multiple point of the order & may be considered as 
resulting from the union of $4(4—1) double points. This may 
be illustrated by the case of & right lines, which must be 
regarded as a system having 44(4—1) double points, namely, 

- the mutual intersections of the lines. But if all the lines pass 
through the same point, this is in the system a multiple point 
of the order &, and takes the place of all the double points. 

And the peindnle 4 is the same whether the lines which intersect 
be straight or curved. A curve by the mutual crossing of 
k; branches may have 4k(k—1) double points, but if all the 
branches pass through the same point, these double points are 
replaced by a multiple point of the order &, | 

41. To be given that a particular point is a double point 
of a curve is equivalent to three conditions. For if we take it 
for the origin, three terms of the equation vanish (Art. 37), 

and the constants at our disposal are three less than in the 
general case. If we are further given the tangents at the 
double point, this is equivalent to two conditions more; for in 

addition to A =0, B=0, C=0, we are now also given the ratios 
Pee D 2 f. 

Being given a triple point is equivalent to six conditions 3 

for, making it the origin, the six lowest terms of the equation 
vanish; and so in general if it is given that a certain point is 
a multiple point of the order 4, this is equivalent to $& (k +1) 

conditions, 

42, There is a limit to the number of double points which 
a curve of the n” degree can possess, when it does not break 
up into others of lower dimensions. 

For example, a curve of the third degree cannot have two 
double points; for if it had, the line joining them must be con- 
sidered as meeting the curve in four points ;. but more than three 
points of a curve of the third degree cannot lie on a right line, 

unless the curve consist of this right line and a conic, 
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Again, a curve of the fourth degree cannot have four double 
points; for if it had, the conic determined by these and any 

fifth point of the curve must be considered as meeting the curve 
in nine* points; whereas no conic, distinct from the curve, can 
meet it in more than 2 x 4 points. And, in general, a curve of 

the n degree cannot have more than 4(n—1)(n—2) double 
points; for if it had one more, through these 4 (mn — 1) (n—2)+1 
and n—8 other points of the curve, we could describe a curve 

of the degree n—2 (Art. 27), which must be considered as 
meeting the given curve in 2 {4 (n—1) (n—2)+1}+n—83 points, 
or in n(n—2)+1 points, which is impossible if the given curve 
be a proper curve. Of course, the demonstration given only 
shows that curves cannot have more than a certain number of 

double points, and does not show (what in fact is the case) 
that they can always have so many. 

43. If the curve have multiple points of higher order, the 
same criterion applies, each multiple point of order k being 

counted as equivalent to $k(k—1) double points. But there 
are limitations to the possibility of substituting for a certain 

number of double points a multiple point of higher order. 
Thus a curve of the fifth degree may have six double points, 
and three of these may be replaced by a triple point; but 
in this case the other three cannot be replaced by a second 

* Tf a point of intersection of two curves be a double point on one of them, that 

intersection must be reckoned as two, and the curves can only intersect in np — 2 other 

points. If it be a double point on both, the intersection must be reckoned as four, 

And in general if it be on the one curve a multiple point of the degree /, and on the 

other of the degree 7, that intersection must be counted as //, Thus, for example, a 

system of / right lines meets a system of / right lines in #/ points; but if all the lines 

of the first system pass through a point on a line of the second system, that point 

clearly counts as / intersections, and the lines intersect only in & (J ~~ 1) other points, 

And if every line of both systems pass through the same point, that point counts as 

kl intersections, and the lines meet nowhere else, 

If two curves touch at their point of intersection, the point of contact will, of 

course, count as two intersections, since they have two coincident points common, 

If the point of intersection be a multiple point on one or both curves, and if one 

of the tangents at the multiple point be common to both curves, we must add one 

to the number of intersections to which it has been already shown that the multiple 

point is equivalent; for, besides the points just proved to be common, they have a 

consecutive point in common on one of the branches through the multiple point. 

The reader will have no difficulty in seeing the effect of any combination of 

tangents and multiple points. 
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triple point, since the line joining the two would meet the 

curve in more points than five. Or, generally, if a curve have 
a multiple point of the order n —2, it can have no other higher 

than a double point, and of these according to the criterion not 
more than n — 2. 

44. We call the deficiency of a curve the number D, by 

which its number of double points is short of the maximum 3 
this number playing a very important part in the theory of curves. 
If D=0, that is, if a curve have tts maximum number of double 

points, the coordinates of any point on the curve can be expressed 
as rational algebraic functions of a variable parameter. For 
the 4 (n—- 1) (n—2) double points, and n — 3 other assumed points 
on the curve, making together 4 (n+1)(m—- 2)—1 points, or one 

less than enough to determine a curve of degree n— 2, we can 
describe through these points a system of such curves included 

in the equation U=X~AV. Now if we eliminate either variable 

between this equation and that of the given curve, we get 
to determine the other coordinate for their points of intersection, 

an equation of the n(n—2) degree in which 2 enters in the 

n degree. But of this equation all the roots but one are 
known; for the intersections of the curves consist of the double 

points counted twice, of the n—3 assumed points, and only of 
one other point, since 

(n —1) (n—2)+(n—3)4+1=n(n—2). 

Dividing out, then, the known factors of the equation, the only 
unknown root remains determined as an algebraic function of 
the ‘n degree in A. 

It is true, conversely, that if the coordinates can be expressed 
as rational functions of a parameter, the curve has the maximum 
number of double points. Curves of this sort are called wnicursal 
curves. When we are given @, y, 2 respectively proportional to 

an” + &e., ar" 4+ &e., a’d" + &e., the actual elimination of A is 
easily performed dialytically. Writing down the three equations 

6x=ar"+&e., Oy=a'r" + &e., O2=a"r" 4+ &e., 

and multiplying each successively by A, d’,...A"", we shall have 
8n equations, exactly enough to eliminate linearly all the 
quantities 0, OA, &e., A, *, Ke. The equation of the curve, 
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then, appears in the form of a determinant of the order 3n, 
but only 2 rows will contain the variables; the curve therefore 
will be of the x order, and its equation will involve the co- 

efficients a, b, &c., in the 2n degree. All this will be more 
clearly understood if we actually write down the result for the 
case n=2. We have, then, the three equations 

6x=anN+bN +c, Oy=aN+br4 Cc, Oz=a"N+b'X4C". 

Multiplying each by 2X, and then eliminating linearly from the 
six equations the quantities 0, OA, »*, A”, A, the result appears 
as the determinant 

, ! ? 

Ys Bapbeyiey 

2, a,b,c |=0. 

_ This is the same as the final equation, Higher Algebra, Art. 193. 

45. It appears from Art. 41, that any three points taken 

arbitrarily may be double points on a curve of the fourth 
degree; for the three are equivalent to but nine conditions. 

But the tangents at all these double points cannot also be 
assumed arbitrarily; for being given the three double points 
and these three pairs of tangents is equivalent to fifteen con- 

ditions, one more than enough to determine the curve. There 
must then be some relation connecting these tangents; and in 

fact, we shall prove afterwards that these six tangents all touch the 
same conic section, so that, given five, the sixth is determined. 

Twenty conditions determine a curve of the fifth degree. 
We may then assume arbitrarily its six double points, and also 
the pair of tangents at any one of them; but the curve is then 
completely determined, and therefore also the pairs of tangents 
at the other five. 

‘T'wenty-seven conditions determine a curve of the sixth 
degree. It would therefore, at first sight, appear that such 
a curve might be described, having for double points nine points 
assumed arbitrarily. But this is not so, for there is through 
the nine points a determinate cubic curve U=0; and then 



32 MULTIPLE POINTS AND TANGENTS OF CURVES. 

a curve of the sixth order having the nine points for double 
points, and in general the only such curve is U* =0, viz. the cubic 
twice repeated. 

And so in like manner for curves of higher degrees, when 
they have their maximum, or even some number less than their 
maximum, number of double points there must be relations 

connecting them. Except in the case of curves of the fourth 
degree, we are not aware that any attempt has been made to 
express these relations geometrically, but there must remain an 

extensive class of theorems of this nature still to be discovered. 

46. What has been. said is sufficient to enable the reader to 
form a conception of the nature of multiple points on curves. 

We shall now proceed to show that a curve may in like manner 
have multiple tangents; or, in other words, that there may be 
lines which touch the curve in two or more points, or which 

have with the curve a contactof the second or higher order. 
What are commonly called the “singular points” of curves may . 
be reduced to the two classes, either of multiple points, or of 

points of contact of multiple tangents. As we introduced 
multiple points to the reader by an examination of the particular 

case where the origin was a multiple point, so it will be more 
simple to commence our discussion of multiple tangents by 
examining the condition that the axis (y=0) should be a 

multiple tangent. 

We find in general the points where this line meets the curve 
by making y= 0 in the general equation, whence we get 

A+ Bat Dx’ + Gu’ +...Px"=0, 

an equation which can be reduced to the form 

P («a —a) (x —b) (w-—c) (w- d) &. =0, 

where a, 6, &c., are the values of z for the points where the 
axis meets the curve. 

The axis will be a tangent when two of these points coincide, 
that is, when there is between the roots a single equality a=. 
The equation here is 

P (x— a)’ (w—c) &e. =0. 

The axis then touches the curve at the pointy=0,2=a. If 
A=0, B=0, the axis touches the curve at the origin. We 
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consider only the case a real, because the equation being real, an 

equality a=} between two imaginary roots would imply another 
equality c=d between two other imaginary roots. | 

The axis is a double tangent if we have between the roots 

two equalities c=a, d=; the equation is then 

P (x — a)" (% — b)? (x —e) &e. = 0. 

We have here the two cases 

I. a and 0 each of them real, when the axis is a tangent | 

at the two real points, z=a,x=06. It is evident that such a 
tangent, meeting the curve in two pairs ¥ Wf 
of coincident points, cannot occurinany ___ EX JS \ 

a c curve of a degree lower than the fourth. 

Il. a and d imaginary, viz., the equation is here 

P(a* + pxt g)* (x —e) &e. =0, 

and we have a double tangent with two imaginary points of 
contact. 

Again, we may have between the roots an equality a=b=c. 

Here the equation is of the form, a being supposed real, 

P (a — a)’ (x — d) &e. =0. 

The axis then meets the eurve in three consecutive points. 

In general, taking three consecutive points on a curve, the line 

joining the first and second of these is a tangent, and the line 

joining the second and third is the consecutive tangent. In 

the present case, therefore, two consecutive tangents coincide. 
Hence too, in such a case, the axis may be called a stationary 

tangent ; for if we consider the curve as the envelope of a move- 
_ able line, in this case two consecutive positions of the moveable 

line coincide. The point of contact of a stationary tangent is 
called a point of inflexion. 

_ If 4=0, B=0, D=0, the origin is a Me 6 
point of inflexion, and y= 0 the tangent at it, 

since then the equation is of the form oN 

Px’ («@—c) &e. = 0. 

47. ‘The crunode and acnode (Art. 38) correspond precisely 

to the double tangent with real contacts and the double tangent 
FEF 
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with imaginary contacts; the cusp or stationary point also 
corresponds precisely with the stationary tangent. But there 
is no correspondence in the analytical theories; for the cusp we 

have an equality a=, which is a particular case of the unequal 

values (a, 6), which belong to the crunode and to the acnode; 
for the inflexion we have a double equality a=b=c, which is 
a relation distinct in kind from the equalities a= 0, c= d, which 
belong to the double tangent with real or imaginary contacts. 
The double point was discussed with point-coordinates; to make 
the analytical theories agree, the double tangent should have 
been discussed with line-coordinates—the stationary tangent 
would then have presented itself as a particular case of the 
double tangent. But in what precedes the stationary tangent 
presents itself as a distinct singularity from the double tangent : 

so with lime-coordinates the cusp would have presented itself as a 
distinct singularity from the double point; and in reference 

hereto the remark was made, Art 38, that the cusp was really 

a distinct singularity. The singularities then mutually corre- 
spond as follows =: 

To a double point or nede A double tangent (contacts, 

(crunode or acnede), real or imaginary), 
To a cusp, spinode, or sta- A stationary tangent, or tan- 

tionary point, gent at inflexion; 

and it is only in @ certain point of view that the cusp is a 
particular case of the double point, and in a different point of 
view (the reciprocal one) that the stationary tangent is a parti- 

cular case of the double tangent. 
Considering the curve as described by a point which moves 

along a line at the same time that the line revolves round the 
point: there is at the cusp a real peculiarity in the motion, the 

point first becomes stationary, and then reverses the sense of 

its motion; and so at the inflexion, the line first becomes 
stationary and then reverses the sense of its motion. At a 
double point there is no peculiarity in the motion, all that 
happens is that the point in its course comes twice into the 
same position; and so, for the double tangent, there is no 
peculiarity in the motion; all that happens is, that the line in 

its course comes twice into the same position. The cusp and 
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stationary tangent are singularities in a more precise sense than 
are the double point and the double tangent. 

48. In ordinary cases the curve lies altogether at the same 
side of the tangent, but at a point of inflexion the curve crosses 
the tangent, and lies part on one side and part on the other. 

This is a particular case of the following more general 

theorem: Zwo curves which have common an even number of 

consecutive points touch without cutting ; those which have common 
an odd number of consecutive at cross one another at their 
point of meeting. 

Let the equations of the two curves be y=¢a, y= Wa; let 
them intersect at the point a=a; then, by Taylor’s theorem, 
the values of the ordinates of the two curves, for the point 
x=a+h, are 

dph. dd h 

sigh eas 1.2 

dph dy h’ 

hae a har 7 1.2 

ip i 

dx 1.2.3 

dnp h’ 

dx 1.2.3 

+ + &e. 

+ —— + &e. 

dbx 
where ¢, ¥, .#, &e., are the values of da, Wa, ses &e., 

when «=a. Now, by hypothesis, ¢ =, since the curves inter- 
sect at the point «=a; therefore . 

dp _dp\h (dp adp\h (do ayp\ bh’ 
IGu= (= - Si (ga dx’ his (s3- iss ag t he 

Now, by the principles of the differential calculus, when / is in- 
definitely small, the sign of the sum of this series is the same as 
the sign of its first term, but the sign of this term is changed 

when the sign of hf is changed; therefore, if at the infinitely 

near point (v=a+h), the ordinate of the curve ¢ be greater 
than that of the curve y, it will be less at the point (2=a—A). 
Hence if two curves have ene point common, in general, that 
which is uppermost at one side of the point will be undermost 
at the other. 

But now suppose that oe ou the first term of the series 

ap dp h’ : 
will then be (S- 4 oe which does noé change sign 

when / changes sign. The same curve, therefore, which is 
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uppermost on one side of the given point, will be uppermost also 

on the other. But when -. — the curves are manifestly 
fe: de ‘ 

closer to each other than in the previous case, since the difference 
of the ordinates no longer involves the first power of h; which 

is equivalent to what is expressed geometrically, by saying that 
the curves have two consecutive points common. Or the same 

s)="02 thing may be shown thus: a'y’, 2"y" being the coordinates to 
au U 

rectangular axes of any two points on a curve, ‘ —a is plainly 

the tangent of the angle which the chord joining them makes 

with the axis of x; but if the points coincide, we learn that 

the value o ey or the given potnt expresses the tangent of the me given p ip J 

angle which the line joining it to the consecutive point (i.e. the 

tangent) makes with the axis of x; consequently, if two curves 

Z for that point the same for both 

curves, it follows that the consecutive point is also common. 

have a point common, and 

49, When the curves have three consecutive points common, 

we shall have - = ae ; the first term of the series for y, — y, 

dh ad’ ia 

s 5S - ae ay. which does change its sign with , and 

therefore, as before, the curves cross at the given point. And 

so, in general, if the expansion of y,—y,, commence with an 

even power of h, it will not change sign with A, and therefore 

the curves touch without crossing; but if it commence with an 
odd power of h, the sign will change with , and therefore the 

curves cross at the given point. 

The reader has already had an illustration of this, in the case 
of the circle which osculates a conic at any point, ang which, in 
general, having three points common with the curve, touches 
and crosses the curye (Conics, Art. 239); but at the extremities 
of the axes the osculating circle passes through four consecutive 
points, and touches without crossing. 

‘The same investigation applies when one of the curves 

becomes. a right line. A tangent, therefore, at a point of in- 
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flexion, or any line meeting the curve in an odd number of 
consecutive points, is crossed by the curve; but a tangent which 

meets the curve in an even number of consecutive points has 

the neighbouring part of the curve all at the same side of it. 

50. The axis y=0 will be a triple tangent when the equa- 

tion which determines the points where it meets the curve is 
of. the form 3 

P (x- a)’ (x —b)’ (x—c)? (x— d) &e. = 0. 

It is evident such a tangent cannot occur in a curve of any 

degree lower than the sixth. We may, as in Art. 40, dis- 
tinguish four species of triple tangents according as the points 

of contact are real and distinct, one real and two imaginary, 

one real and two coincident, or all three coincident. The last 
will be the case when the equation is of the form 

P(a—a)*(w—b)&e.=0; 
and the axis meets the curve in four coincident points: the point 
of contact of such a tangent is called a point of undulation. In 

like manner there may be multiple tangents of still higher 
orders, or again, points of undulation of higher orders, arising 

when a line meets the curve in more than four coincident points. 

Cramer calls those points at which the tangent meets the curve 
in an odd number of consecutive points, points of visible inflewion, 

to distinguish them from those points de serpentement, or points 

of undulation, which do not, to the eye, differ from ordinary 
points on the curve. 

51. We have hitherto only illustrated the case where the 
origin is a multiple point, or one of the axes a multiple tangent ; 
it is evident, however, that the form of the equation might, in 

like manner, show the existence of multiple points and tangents 

situated anywhere. 

I. For instance, if the equation be of the form 

ap + By =0, : 

where a, 8 are linear functions of the coordinates, and ¢$, > 

are any functions of the coordinates, then a8 is one point on the 
curve. ‘The equation of the tangent at this point is 

ap’ + Py’ =0, 
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where ¢', y’ are the values which ¢ and yr assume when we 

introduce the conditions a=0, 8@=0. For if we seek the n—1 

points, in which any line through «8, («=8) meets the curve, 
we get an equation of the form 

B {k (¢'+ MB + NB’ + &.) + (v' + MB + N'B’ + &e.)} =0; 

and in order that a second root of this should be 8=0, we must 

have kf’ ++’ =0; whence, substituting for & its value B? we 
get for the equation ef the tangent 

ap’ + By’ =0. 

II. In general the curve represented by 

aByd &e. =a,8 75, &e. 

passes through the points 

aa, a8, ay, &c., Ba, BB, By,, &e., ya, 8, vy, &e. 

III. If the equation be of the form 

ap + Bp =0, 
we see (as at Conics, Art. 252), that a is the tangent at the point 
a8, for two of the points in which this line meets the curve 
coincide. 

Or again, if the curve be 

ttt,...t, + B’p=0, 

t,, &c. are the tangents at the n points, where 8 meets the curve. 
The form of the equation shows that ¢f the points of contact of 

a tangents lie on a right line B, the remaining points where these 

tangents meet the curve lie on the curve of the (n—2)™ degree ¢. 

IV. If the equation be of the form 

arp + aby + Bx =0, 
and if we seck the points where any line («=£8) through «8 meets 
the curve, we find that two of these always coincide with a8, 
and therefore that this is a double point. It appears precisely as 
in I., and in Art. 37, that the tangents at this double point are 

ag + aByp'+ Bty'=0, 
where ¢', wy’, x’ are the values which these functions take for 
the coordinates of the point a=0, 8B =0. 
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V. So again, if the equation be of the form 

aedt+aBy+ab y+ B’o=0, 

the point @@ is a triple point; the three tangents being given ty 
the equation 

ad’ +a°Ry’ + a6’y'+ Bw’ =0. 

VI. If the equation be of the form 

ap + By = 0, 

a is a double tangent at the points a8, ay. 

VII. If the equation be of the form 

ap + BY = 
a8 is a point of inflexion, and a the tangent at it. 

52. We shall first illustrate the last Article by showing how 
the equation enables us to discern the nature of the points of 

the curve at an infinite distance. ‘The trilinear equation is 

(Art. 26) 
U,+U, 2+ U, + Ke. =0. 

n-1 

Writing herein z= 0, the directions of the n points at infinity 
are found from the equation vu, =0, which, solved for y : a, is of 
the form 

(y — m,x) (y — me) (y — mx) (&e.) (y — mx) = 0. 
A curve of the n degree has, in general, n asymptotes, namely, 

the tangents at the points, where z, the line at infinity, meets 
the curve. We can find their equations readily as follows, when 

the equation w,=0 has been solved for y: #. It appears, from 
III. of the last Article, that if the equation were reduced to 
the form 

ti +2°¢=0, 

t,, &c. would be the be cent But the given equation 

(y — m,x) (y — mx) &e. + zu,_, + 2°u,_, + Ke. =0 

may always be reduced to the form 

(y —m,x + 2,2) (y — mw + A,2) Ke. = 2h; 

for the terms of the n“* degree in x and y are obviously the same 
for both equations, and the » arbitraries, X,, &c., in the second, 
can be so determined as to make the nm terms of the (n—1)™ 

degree the same for both equations. 
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The reader will have no difficulty in understanding this method, 
if he tries to apply it to a particular example; for instance, 

(a+ y) (Qe4+ y) (Buty) + 17x’ + lay + 2y? + 12% 4 10y + 36 =0, 

which it is desired to throw into the form 

(e+ y+r,) (Qa+y4+X,) (8a+y+A,)+ Ax+ By +C=0. 

To determine 2,, A,, X, we should then have the three equations 

6A, + 5A, + 2A,=17, 5A, +40, + 3A, =11, AFA, +A, =23 

and the equation may be reduced to the form 

(a+ y+ 4) (Qe+y—3) (8a+ y¥+1)+43x421y+48=0. 

Observe that the values ,, A,, >, are such that we have 
identically 

17x? + llxy + 27? r r r 
1 2 3 

(e@t+y) Quty) Quty) ety Bet+y Baty’ 
and so in general the values 2,, X,,... are determined by decom- 
posing w,_,+, into its simple fractions. 

53. If two roots of the equation u,=0 be equal (m,=™,), 

the general equation takes the form (y—m,x)’ $+ 2p~=0; two 
of the points where z meets the curve coincide, and the line at 
infinity is therefore a tangent to the curve. But if the factor 

y—m,x is also a factor in w,,, then the curve has a double 
point at infinity; for the equation is of the form 

(y—m,x) o6+2(y—m wx) pte'y=0. 

Should three roots of the equation u,=0 be equal, the line 
at infinity meets the curve in three coincident points, and there- 
fore touches at a point of inflexion. 

If in the general equation the coefficient of y" be = 0, the axis 

of y passes through a point at infinity, and we have evidently 
only an equation of the (n--1) degree to determine the re- 
maining points where it meets the curve. 

Should the coefficient of y"* also vanish, the axis of y will be 
an asymptote. : 

54. We shall in a future section show how the singular 
points of a curve may, in general, be found. But the application 
of the general methods being usually a work of some difficulty, 
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the examples given in works on the differential calculus are, for 
the most part, cases where the existence of the singular points 
more readily appears from mere inspection of the equations; a 
selection, including all the most difficult of these examples, 
will therefore serve to illustrate the preceding Articles. (See 

Gregory’s Examples, p. 170, &c.) 

Ex. 1. z*— aaty + bys = 0. 

Ex. 2, xt — 2ax?y + 2a7y? + ayS + yt = 0. 

In both cases the origin is a triple point. The tangents of the first are given by 
the equation ax’y = by*; and of the second by the equation 2a%y=y3, By Art. 43 

neither curve can have any other multiple point. 

Ex. 3. ay? — 2° + bz? = 0. 

The origin is a double point, whose tangents are given by the equation ay?+bz2?=0, 

If the sign be given positive, the origin is a conjugate point. 

Ex. 4. (a? — a?)? = ay? (2y + 8a), or (x — a)? (2 + a)? = ay? (2y + 3a). 

Here evidently (« —a, y) and (a+, y) are double points. To get the tangents 

at the first, we are to make «=a, y=0 in the parts which multiply (x — a)?, y’, 

and we get 
4 (aw — a)? = 3y?, 

In like manner for the tangents at the other double point, 

4 (@ + a)? = 3y?. 

The curve has a third double point, whose existence can be shown by throwing the 

equation into the form 
x? (a? — 2a”) =a (2y — a) (y + a). 

Hence, (w, y + a) is a double point, and the tangents at it are 

2x? = 3 (y + a). 

Having found these three, we know, by Art. 42, that the curve can have no other 

multiple point. 

Ex. 5. (dy — cx)? = (4 — a)5. 

The point (dy — cx, x — a) is a cusp of such a nature that the tangent at it meets 

the curve in five consecutive points, 

Ex. 6. x (« + 6) = aty?, 

The origin is a double point, the tangent at which meets the curve in four 

consecutive points. There is a triple point at infinity, to which the line at infinity is 

the only tangent. The line «+0 touches the curve where it meets the axis of 2, 

and also at a point of inflexion at infinity. 

Ex. 7, ike 0, 

This equation, cleared of radicals, becomes 

(a? + y? + 27)3 = 27ar7y"2? ; 

and in this form the existence of six cusps is manifest, for each of the points where 

x meets y?+2? is a double point, and z the only tangent at it. Similarly for 

(y, x? + 2”) and (z, x? + y*). But the cusps are all imaginary. 

The curve has also four double points, viz. (t#+y=0, «+2=0). 

This can be proved by putting yf «=u, 2x =v; and therefore 

Y¥=Ute, z=vtisz. 

G 
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Substituting these values in the given equation, it is of the form 

wp + uv + vx. 

The tangents at any of the double points will be found to be given by the equation 

w+tuv+v?=0, 

and therefore the double points in question are conjugate points; and, in fact, these 

are the only real points of the curve. 

Or again, the equation may be written 

9a? {at — a (y? + 27) + yt — ye? + a — (20? — y? — 27/8 = 0,7 

which is one of three like forms, viz. writing &, , ¢ = y* — 2’, 2? — a, w — y?, the 

form is 9x? (yn? + nf + ¢?) —(n— 0% = 0; putting in evidence the double points y = 0, 

¢=0; or, what is the same thing, £=0, n=0, ¢=0, that is, 2? = y? = 2. 

SECT. HI.—TRACING OF CURVES. 

55. It is proper to give some examples of the method of 
tracing the figure of a curve from its equation. If we give any 
value (a) to either of the variables x, the resulting numerical 

equation can be solved (at least approximately) for y, and will 

determine the points in which the line 2=a meets the curve, 
By repeating this process for different values of x, as at Conics, 

Art. 16, we can obtain a number of points on the curve; and, 

by drawing a line freely through them, can obtain a good idea 

of its figure. By taking notice what values of x render any 

of the values of y imaginary, we can perceive the existence of 

ovals, or can observe whether the curve is limited mm any 

direction; and we have already shown (Art. 52) how to find 

whether the curve has infinite branches, and how to determine 

its asymptotes. It will be shewn in the next section how to find 

its multiple points and points of inflexion. The value of = 

at any point gives the direction of the tangent at that point 

(Art. 48); and if we examine for what points “d <0, or =o 

we shall have the points at which the course of the curve is 
parallel or perpendicular to the axis of a. 

In practice we must, of course, take advantage of any 
simplifications which the equation of the curve suggests. Thus, 

if we consider a series of lines parallel to one of the asymptotes 
(or a series of lines passing through a point on the curve), the 

equation which determines the other points in which each of 
them meets the curve is of a degree one lower than the degree 

of the curve. If the equation shows that the curve has a double 

? 
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or other multiple point, it is advantageous to consider a series 
of lines drawn through this point, since then the equation in 
question will lose two or more dimensions. 

There is scarcely any exercise more instructive for a student 
than the tracing of curves, and more particularly those in which 

the equation contains one or more parameters which assume a 

succession of different values. In the case of a single parameter, 
this may be conceived of as an ordinate z in the third dimension 
of space, and the problem thus, in effect, is to find the form of 
the several parallel sections of a surface. 

It will suffice to add a few examples to those which will 
incidentally occur in the course of these pages. We refer 

the reader who may wish for further illustration, to Gregory’s 
Examples, Chap. X1.; or, if still unsatisfied, to the source 
whence all later writers on the subject have drawn largely. 

Cramer’s Introduction to the Analysis of Curves. 

Ex. 1. xt — axy + by3 = 0 (see Ex. 1, p. 41). 

Here, the origin being a triple point, it is advan- 

tageous to consider a series of lines drawn through it. 

Substituting y= ma, we find a*= m (a — bm?), a func- 

tion which, as m passes from 0 to + , increases from 0, 

when m = 0, toa maximum value when a — 3mb?=0; 

then decreases, and vanishes when a — bm? = 0, and has 

an indefinitely increasing negative value as m increases 

further. The curve is manifestly symmetrical in re- 

gard to the axis of y. Hence the figure is that here 

represented. 

Hx. 2. (a? — a*)? = ay? (3a + 2y), (see Ex. 4, p. 41), 

Hence x? = a? + J{ay? (83a + 2y)}. The curve is plainly symmetrical in regard to 

the axis of y. It has on each side two branches, corresponding to the two signs 

which may be given to the radical. The two branches intersect when y= 0, and ac- 

cordingly we have seen that there are on the axis of x two double points at the distance 

x=+a. As y increases positively, the radical increases indefinitely ; hence the value 

of. x, corresponding to the one branch, increases 
indefinitely ; that corresponding to the other de- 

creases, until we? come to the value of y corre- + 

sponding to the single positive root of the equation ig 

2ay® + 3a*y? = at, (2y=a), beyond which this 

branch can extend no higher. For negative values 

of y, the radical increases to a maximum value 

when y+a=0; the one pair of branches then 

intersect in a double point on the axis of y, and 

the other pair is at its furthest distance from that 

axis. Evidently neither branch can proceed lower 
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than the value 8a+2y=0. Hence the shape of the curve is that represented in 

the figure, 

Ex. 3. Given base of a triangle 2¢ and rectangle under sides m?, the locus of vertex 

is Cassini’s oval, whose equation is, the origin 

being the middle point of base, 

(x? + 9? — 7)? — 4c?x? = m4, 

The accompanying diagram represents the 

figure for different values of m. The dark 

curve represents the figure for m = c, the curve 

being then known as the lemniscate of Ber- 

nouilli. When m is less than ¢, Cassini’s curve 

consists of two conjugate ovals within the parts of this figure: when m is greater 

than c, of one continuous oval outside it. 

Ex, 4. On the radius vector from a fixed point O to a fixed line MN a portion 

RP of given length is taken on either side of the right line. The locus of P is a 

curve called the conchoid of Nicomedes, invented by that geometer for the solution 

of the problem of finding two mean proportionals, 

If OA=p, RP =m, the polar equation is (9 +m) cosw =p, and the rectangular 
equation 

my’ = (p — y)? (x +9"), 

The line MN (p=y) touches at a singular point at infinity, and there meets the 

curve in four consecutive points. 

The point 0 is also a double point, the tangents at which are given by the equations 

pat + (p? — m?) y= 0. 

It will therefore be a node, conjugate point, or cusp, according as m is greater, less 

than, or equal to py. The continuous line represents the case when m is greater than 

p; the dotted line that when m is less than p. 

Ex, 5. In like manner on the radius vector to a fixed circle from a fixed point on it 

a portion of fixed length is taken on either side of the circle. The curve is called 

Pascals limagon. The polar equation is p=pcosw+m; and the rectangular 

(x? + y* — px)* = m?* (x + y”). The origin is evidently a double point and is a node 

or conjugate point according as p is greater or less than m. When p =m, the origin 

is a cusp, and the curve is of the form of a heart, and is called the cardioide, This 

is represented by the dark curve in the figure, the inner and outer curves repre- 

_ senting the forms with a node and with a conjugate point respectively. 
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Ex. 6. (x? — a?)? + (y? — b*)?= ct, where 4 is supposed less thana. When ¢=0, 

the curve consists of the four conjugate points +a, +0. The figures represent the 

cases, (1) ¢ less than b, (2) c=}, (8) ¢ intermediate between 6 and a, (4) c=a, 

(5) c>a, < (at +04), (6) c= 4{(a* + 54). When ¢ has a greater value, the curve 

is of similar form, but without the conjugate point at the origin. Whenc=a=6, 

the double points of (2) and (4) present themselves simultaneously, and the curve in 

fact breaks up into two ellipses as in (7). 

(1) 
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ae 

Aw akS, 
4G.) 
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56. If a curve pass through the origin, then if this be an 
ordinary point on the curve, y may be developed in the form 
y=Ax+ Bx’ +...; when the origin is a singular point, the form is 

y= Aa*+ Bx? + &e., where @ is positive and @ and all the indices 
which follow are greater than a; it is for determining the nature 

of the singular point, and the form of the curve in its neighbour- 

hood, very convenient to find even the first term of this develop- 

ment; in fact, in the neighbourhood of the origin the figure 
resembles that of the curve y= Az*, which can easily be con- 

structed. In order to effect such a development, we can employ 
the process given by Newton,* which is most conveniently 
used in the following form. Write in the equation y = Ax’, and 
determine the positive quantity a by the condition that the 
indices of two or more terms shall be equal, and less than the 

index of any other of the terms. This can always be done 
by trial, by equating the indices of each pair of terms, and 

observing whether the resulting value of a is positive, and 

the equal indices not greater than the indices of some other 

term. Having thus found a, we determine A by equating to 

zero the quantity multiplying the terms with equal index. 

* See Methodus Fluxionum et Serierum infinitarum, Gc., under the heading 

De reductione affectarum equationum (Opusc. ed. Castillon, vol. 1. p. 37). See also 

a paper by Professor De Morgan, Quarterly Journal, vol. 1, p. 1, and Transactions 

of the Cambridge Philosophical Society, vol. 1X., p. 608. Newton gives the rule 

by means of a diagram of squares, in a form different from that given above, 
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We can then carry on the expansion by substituting y=Aw*+ Bx’, 
where A and a have the values already found; and § and B are 
determined, if need be, by a similar process; but it usually 
happens that after the first term or terms the indices will 

proceed in a regular order, and the coefficients will be each of 
them linearly determined. Thus, for example, let the curve be 

a + y° — 3axy =0; where the origin is a double point having the 
two axes for tangents; then, writing y=d* the equation becomes 

a + A’a™* —3aAa*™ = 0. 

We are now to make two indices equal. Trying first 3 = 3a, 
or a=1, we reject this value because it makes the equal indices 
greater than the index «+1 of the other term. ‘Trying next 

3=a+1, or a=2, we find that this value will make the equal 
indices less than that of the third term. The equation will 

become (1 — 3aA) a*°+ A’x®=0, and determining A so as to 
make the coefficient of a* vanish, we see that the equation may 

be expressed in the form y= 52 + &e, where the indices of 

the remaining terms are greater than 2; and we learn that the 

form of one branch of the curve at the origin resembles that 
of the parabola 3ay=2*. And in the third place equating 

the indices 3a, a+1, we find a=}. Here again, the equal 

indices are the lowest and the coefficients of the two terms are 
A*, —3aA, whence A =,/(3a), and the branch is y=,/(3a)a*+ &e., 
wherefore near the origin the form approaches to that of the 
parabola 7*=3ax. It is not necessary for our present purpose, 

but if we desire to continue the expansion we should substitute 

, ees 
aero xz’ + Bx*®. The lowest terms would then be 

: -s a® 4+ on xt? — 3a Bue" = 0. 

We can then make the indices of two terms equal, and lower 

than the remaining one, by making 8=5, whence Baa. 

We have shown, then, that if we trace in the y 
neighbourhood of the origin the two parabolas Ne V o 
3ay = 2°, y= 3ax, we have approximately the : 

figure in that neighbourhood of the curve we wish \ 
to construct. 
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57. The same process will lead to a determination of the 
infinite branches of the curve. We must then expand y in 
descending powers of x, and the only dif- 

ference in the process is that we now make AQ 
the equal indices greater than that of any ‘ 

other term. Thus, in the example already a 

given, equating the indices 3, 3a, we have 
a=1, and their coefficient A*+1. Attending Nx 

only to the real value for A (=—1) we sub- | 

stitute y=—a#+Bex*, and find in like manner B=0, B=- a. 
We thus get the expression y=—a2—a+&c., and we see that 

the line ~+y+a=0 is an asymptote. The figure is as in the 
diagram. 

58. In the case of the simple cusp of which we have had an 
example, see Art. 39, the two branches which meet at the cusp 
lie on opposite sides of the common tangent, and have their 
convexities opposed to each other; but there is a cusp (which 

is a singularity of higher order) in which the branches lie on 
the same side of the tangent. ‘Thus, in the curve m(ay—2’)*=2°, 
it is plain that any positive values of # give real values for y; 

5 

and if we write the equation in the form ay =x" + = , then since 

the last term is less than the preceding when « is small, we see 
that, whether we use the upper 

or lower sign, the value of y will 
be positive for small values of x. 

The axis of a, then, is a tangent 

and both branches lie on the | ee ee 
upper side of it. The figure is ~~ 

as here represented. These two kinds of cusps have been 
called keratoid and ramphoid from a fancied resemblance to the 

forms of a horn and a beak. We have seen (p. 27) that 

ordinary multiple points of higher order may be regarded as 
resulting from the union of a number of double points. Professor 
Cayley has shewn (Quarterly Journal, vol. vit. p. 212) that 
any higher singularity whatever may be considered as 

equivalent to a certain number of the simple singularities, the 
node, the ordinary cusp, the double tangent, and the in- 
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flexion. Thus, a cusp of the kind described in this article is 
equivalent to one node, 
one cusp, one double 

tangent, and one inflex- 
ion, as will appear from 
the annexed figure which 

exhibits the node and 
cusp on the point of uniting themselves into the higher sin- 
gularity in question. 

SECT. IV.—POLES AND POLARS. 

59. The method that we shall presently use in investigating 
the conditions that a curve should have multiple points or 
tangents, and in ascertaining their position, is the same as that 

already employed in the case of the origin.. We shall consider 

a series of radius vectors drawn through :a given point; we 

shall form the equation which determines the coordinates of 

the n points where any such radius vector meets the curve, and 

we shall examine the conditions that one or more of these 

points may coincide with the given point itself. In order to 
determine the coordinates of these nm points we shall use 

Joachimsthal’s method explained Contcs, Art. 290. Since the 
trilinear coordinates of any point on the line joining two points 
x'y'z', x'y"2" are of the form Ax’ + pa", rAy'+ py", Az’ + 2", 

the points where the joining line meets any curve are found 

by substituting these values for a, y, 2, and then determining the 
ratio X: w by the resulting equation. And it will be a necessary 
preliminary to the following investigation to discuss carefully 

the functions which present themselves in this substitution. 

If then in U, which is a homogeneous function of the n™ order 
in 2X, ¥, 2, we substitute Aw + pa’, Ay+ wy’, AZ+ pz’ for a, y, Zz, 

it is evident by T'aylor’s theorem that the coefficient of X” will 
be U, and that of A” will be 

om aU A aU | 2! dU 
da 7 dy dz 

using the abbreviations U,, U,, U, or L, M, N (as the case may 

be) for the differential coefficients. We shall use the symbol A 
H 

,or £U,4+7'U,4+2'U, or a’ L + y'M+2'N, 



50 POLES AND POLARS. 

to denote the operation pass yrree, and the coefficient 

of A" may thus be written AU. In like manner the coeffi- 

cient of X”*y? will be half 

Bau, @U. 80, EU Sy Ag ee 
dat | apg ** da * Y* oyde* #2 Tede "4 dady’ 

which may be written 
j 2 

(o£ ty +25) OT or A’U. 

The second differential coefficients are often written with double 
suffixes U, U,,, U,,, U,. U,, U,., but we find it more con- 
venient to use the letters, a, b,c, f,g,h, and so to write A*°U 
in the form we have used in expressing the general equation 
of a conic 

ax” + by’ + ca? + 2fy2 + 2gux + 2hxy. 
In like manner the coefficient of ’”*y* in the expansion is 

1 eee 
1.2.3 List jes 

It is evident however from the symmetry of the substitution 

that this coefficient will be U’, and in general, that the co- 

efficients of any two corresponding terms A“y’, A’u", only differ 

by an interchange of accented and unaccented letters. We 
see thus that A”’U only differs by a numerical factor from 
xU',+yU',+2U’,, and generally that 

np p 
(woty 5+" 5) U, (eBtyptes) sae 

only differ by a numerical factor, We may write the last 

function A’U’, the accent on the U serving to mark the inter- 
change of accented and unaccented letters. 

A*U, and so on; the last coefficient being 

60. The curve of the (n— 1) degree AU=0 is called the 

first polar of the point 2’y’z’, with respect to U. In like 
manner A’?U=0 is called the second polar, and so on, the 
degrees of the successive polar curves regularly diminishing by 
one, the (n—2)™ polar being a conic, and the (n—1)™ a right 
line. And, from the remark just made, it is plain that the 
equations of the polar line and conic are respectively 

i es a a 
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Since A’U is obtained by performing the operation A upon 
AU, it is plain that the second polar of 2'y'z', with respect to U, 
is the first polar of the same point with respect to AU; and 

generally that the polar curve of any rank is also a polar of the 
same point with respect to all polar curves of a rank lower than 

its own; as is.evident from the equation A‘ (A'U) = A*'U. 
For the origin, for which 2 and y' vanish, the operation 

A reduces to differentiating with respect to z. If the ordinary 

Cartesian equation be made homogeneous by the introduction 

of the linear unit z (Conics, Art. 69), it may be written 

ue +42 +u,2"*?+&c.=0, 

and we find without difficulty, by differei:tiating with respect to 2, 

that the equations of the polar line, conic, &c. of the origin are 

nue+u,=0, $n(n—1)u,2°+(n—l)uztu,=0, &e. 

61. The locus of all the points whose polar lines pass through 
a given point is the first polar of that point. 

The equation 2U'+yU;+2U,,=0 expresses a relation 
between xyz the coordinates of any point on the polar line, 
and a'y'z' those of the pole. And, as in Conécs, Art. 89, we 

indicate that the former coordinates are known and the latter 
variable, by accentuating the former and removing the accent 

from the latter coordinates, when the equation becomes 

x U,+y'U,+2'U,=0. There are (n- 1)’ points, whose polar 
lines with respect to U will coincide with any given line, or, 
more briefly, every right line has (n—1)* poles. For take any 
two points on it, the poles of the right line must lie on the 
first polar of each of these points; therefore they are ‘the 
intersections of these curves. Also the first polars of all the 
points of a right line have (n-—1)’ common points, viz. the (n— 1)" 
poles of the right line. 

In like manner, the locus of points whose polar conics 
pass through a given point is the second polar of the point; 
and so on. 

If the polar line (or any other polar) of a point pass through 

the point, that point will be on the curve. for if we substi- 
tute wy'z’ for xyz in the equation of the polar, it becomes 

identical with the equation of the curve, since the operation 
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| d 
one LA pa ; ] 

ty hy gaan performed on a homogeneous function only 

affects it with a numerical factor. 

62. [fa curve have a multiple point of the order k, that point 
will be a multiple point of the order k—1 on every first polar, 

of the order k—2 on every second polar, and so on. For if the 

origin be at the multiple point, the lowest terms in a and ¥ 
will be of the degree £3; in the first polar, which involves only 
first differentials of U, the lowest terms in 2 and y will be of 

the degree £- 1, and therefore the origin will be a multiple 

point of that order; the equation of the second polar, involving 

second differentials of U, will contain x and y at lowest in the 

degree /— 2, and so on. 
If two tangents at the multiple point in the curve coincide, 

the coincident tangent will be a tangent to the first polar. 

For the lowest term u, is of the form a’bcd..., where a, b,... 

represent linear functions of the coordinates, and hence its 

differentials will contain @ as a factor, and therefore the 

lowest terms in the equation of the polar contain a as a factor. 
And, in general, if 7 tangents to the multiple point on the: 

curve coincide, 7—1 of them will be coincident tangents at 

the multiple point on the first polar, 7—2 at the multiple point 

on the second polar, and so on. For if u, have any factor 
in the 7 degree, that factor will be one of the (7— 1) degree 

in all the first differentials of u,; of the (c— 2) in all the 
second differentials, &c. 

SECT. V.—GENERAL THEORY OF MULTIPLE POINTS AND 

TANGENTS. 

63. We proceed now to apply the method indicated in 
Art. 59 to the investigation of the multiple points and tangents 

of curves. In order to find where the line joining the points 
xy'z', xy'z' meets the curve, we substitute in the equation 

Aza’ + pa" for x, &e., and we get in order to determine the ratio 
X : #, an equation which we may refer to as A=0, and whigh 
may be written 

AU +r" tpAU' +4r" WAU + &e. = 0, 
it being supposed that in AU’, &c., as previously written, v"y"2”" 
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have been substituted for xyz. In order that one of the points 

Aa’ + po", ry’ + py", Az’ + we" should coincide with a'y’z’, it is 

obviously necessary that one of the roots of the equation A=0 
should be »=0. But this clearly will not be the case unless 

U'=0; and it is otherwise evident that the condition that 

x'y'z' should be on the curve is, that its coordinates substituted 
in the equation of the curve should satisfy it. 

64. Two of the points in which the line meets the curve 

will coincide with z'y'z’, if the above equation be divisible by 

pb’; that is, if not only U'=0 but also AU’=0: now it is plain 
FES RE < 88 that if the line joining 2'y'z' a point on the curve to 2”y"z" meet 

the curve in two points which coincide with a'y'z’, then ay'z" 
must lie on the tangent (or tangents if more than one) which can 

f fi-} 

be drawn to the curve at 2’y'z': but we have now proved that in 

this case a''y"z" must satisfy the equation «U,'+ yU+2U=0. 

Hence, in general, at a given point on the curve there is but 

one tangent, whose equation is that just written. It appears 
thus that the polar line of a point on the curve ts the tangent. 

All the other polar curves of the point x'y'z' will touch the 

curve at that point. For it was proved (Art. 60) that the polar 
line with respect to the curve U will also be the polar line 

with respect to each of the polar curves; and (Art. 61) the 

coordinates «'y'z' satisfy the equation of each of the polar 

curves; and therefore, by what has been just proved, the polar 
line with respect to any of them will coincide with the tangent. 

65. The points of contact of tangents drawn to a curve from 
any point lie on the first polar of that point. This is a particular 
case of what was proved in Art. 61, or it may be established 

directly in the same way. ‘The equation of the tangent at the 
point 2'y'z’ having been shewn to be eU,'+ yU,'+2U,' =0, then 
by an interchange of accented and unaccented letters we in- 
dicate that the coordinates of a point on the tangent are sup- 
posed to be known, and those of the point of contact unknown; 

and we see that the latter coordinates must satisfy the equation 
a U,+y'U,+2'U,=0. The curve and its first polar clearly 
intersect in n(n—1) points, and since at each of these inter- 
sections U=0, AU=0 will be satisfied, we see that from a 
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given point there can be drawn n(n—1) tangents to a curve of 
the n degree. Or, again, (Conics, Art. 303) the degree of the 

reciprocal of a curve of the n™ degree is in general n(n—1). 

66. If, however, the curve have a double point, it was 

proved (Art. 62) that the first polar of any given point must 
pass through that double point. The double point, therefore 
(see note, p. 29), counts for two among the intersections of the 
curve with its first polar. But the line joining the point a’y"z” 
to the double point is not a tangent in the ordinary sense of 
the word, though it is indeed included among the solutions to 

the problem we have been discussing (viz., to draw a line 

through zy"z", so as to meet the curve in two coincident 
points); for we have shewn that every line through the double 
point must be considered as there meeting the curve in two 
coincident points. Now the entire number of solutions to this 

problem being always x” (n—1) (viz., the intersections of U and 
AU), the number of tangents, properly so called, which can be 

drawn to the curve is diminished by two for every double point 

on the curve; or the degree of the reciprocal of a curve of the 
a4 degree having 6 double points is n (n — 1) — 26. 

67. Ifthe curve have a cusp, we have proved (Art. 62) that 
the first polar not only passes through the cusp, but also has its 

tangent the same with the tangent at the cusp. Hence (see 
note, p. 29) this cusp counts as three among the intersections 

of the curve with its first polar, and the remaining intersections 
are consequently diminished by three for every cusp on the 
curve. Hence the degree of the reciprocal of a curve having 6 
ordinary double points and x cusps, ws 

n(n—1)—26—3x.* 

* According to Poncelet, Waring was the first who investigated the problem 

of the number of tangents which can be drawn from a given point to a curve of the 

mn degree. (Miscellanea Analytica, p.100). This number he fixed as at most n?. 

Poncelet shewed (Gergonne’s Annales, vol. VIII. p. 213) that this limit was fixed 

too high; that the points of contact lie on a curve of the (nm — 1)th degree, and that 

their number cannot exceed n(n—1). Finally, Pliicker established the formula 

in the text, and thereby fully explained (as we shall do further on) why it is that 

only n tangents can be drawn to the reciprocal of a curve of the nth degree, though 

that reciprocal is, in general, of the degree n (mn — 1). 
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68. The same principles would shew the effect of any higher 
multiple point on the degree of the reciprocal. A multiple point 
of the order & would (Art. 62) be a multiple point of the order 
k —1 on the first polar, avd therefore the number of remaining 
intersections, and consequently the degree of the reciprocal, 
would be diminished by k(/—1). 

We have shewn (p. 28) that a multiple point of the order 
k is equivalent to 44 (k4—1) double points, each of which would 
diminish the degree of the reciprocal by two. And the result 
we have now obtained may be stated: the effect of a multiple 
point on the degree of the reciprocal is the same as that of the 

equivalent number of double points. And so generally (see 

Art. 58) for a multiple point equivalent to 6’ double points, «’ 
cusps, rt double tangents, and v’ inflexions, the effect on the 

degree of the reciprocal is = 28’ + 3x’, 

69. We have already seen that the line joining a‘y’z’ and 

x'y"z' will meet the curve in two points which coincide with 
x'y'z' if U'=0, and if xyz" be so taken as to satisfy the 
equation 2”"U'+ y"U/+2"U/=0. But if it should happen 
that the coordinates a'y’'z’ satisfy the three equations U,=0, 

U,=0, U,=0, then the second condition 2” U)'+ y"U,'+2"U,/=0 
is satisfied, no matter what 2”y"z” may be. The point a’y’z' is 

then a double point, and every line drawn through it meets the 
curve in two coincident points. 

We see then that the curve expressed by the general equa- 
tion in Cartesian or trilinear coordinates will not have any 
double point unless the coefficients be connected by a certain 
relation. For the three curves U.=0, U,=0, U,=0 will not in 
general have any point common to all three, and therefore the 
functions U,, U,, U, cannot all be made to vanish together. IEf 
between these three equations we eliminate 2: ¥:2, we shall have 
a relation between the coefficients, which will be the condition 

that these three polars should intersect, or that the curve U 
should have a double point. This condition is called the dis- 
criminant of the equation of the curve. Thus (Conics, Art. 292) 
we found the discriminant of a conic by eliminating a: ¥: z 
between the three equations 

ax+hy+gz=0, ha+ byt+fze=0, gut+fyt+cz=0, 
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each of which must be satisfied by the coordinates of the double 
point if the curve have one, and we found 

abe + 2fgh — af” — bg’ — ch? =0. 

In general the discriminant will be of the degree 3 (n— 1)’ 
in the coefficients of the given equation; for (see Higher 

Algebra, Art. 76) since the three derived equations are each of 

the degree n—1, their resultant contains the coefficients of each 
in the degree (n—1)*, but the coefficients of the derived equa- 

tions are each of the first degree in the coefficients of the original 

equation. See also Higher Algebra, Art. 105. 

70. We may apply these principles to examine the con- 

ditions which must be satisfied when the first polar of any point 
A, xy'z', has a double point. Differentiating the equation 

x U,+y'U,+2'U,=0, and using for the second differentials the 
. notation of Art. 59, we see that if there be a double point B, 

its coordinates must satisfy the three equations 

ax'+hy'+gz2'=0, hx' + by'+ fz =0, ga'+fy'+cz’=0. 

These are three relations connecting 2'y'z’, the coordinates of 

the point A with xyz, the coordinates of the double point B, 

of which coordinates a, 6, &c. are functions each of the (n—2)® 

degree. But on comparing these equations with those cited 
in the last article, we see that if we write the polar conic of 
the point B 

ax’ + by” + c2z* + 2fyz + 2gax+ 2hay =0, 

the three relations are exactly the conditions that must be 
fulfilled when A or a'y’'z' is a double point on the polar conic. 

Hence we infer, ¢f the first polar of any point A has a double 

point B, then the polar conte of B has a double point A; and 
vice versa. : 

Between the three equations we can eliminate a’y’z’, and 
obtain as a relation which must be satisfied by zyz, 

abe + 2fgh — af* — bg’ — ch? = 0. 

This equation then is the equation of the locus of points B, and 
it appears from what has been said, that it may be described 

either as the locus of points which are double points on first 
polar curves, or as the locus of points whose polar conics break 
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-up into two right lines. Since the second differentials a, b, &e. 
are each of the order n— 2 in xyz, the equation just written is 
of the order 3 (n—2). The curve which it represents has im- 

portant relations to the given curve, of which it is a covariant 

(Higher Algebra, p. 124). On account of its having been first 
studied by Hesse, it is called the Hessian of U. 

If between the three equations we eliminated ayz, the re- 
sulting equation in a'y'z’ would give the locus of points A, 

which may be described either as the locus of points whose 

first polar has a double point, or of points which are double 
points on polar conics. This locus we shall call after the_ 

geometer Steiner, the Steinerian of U. In order actually to 

perform the elimination in any case, it would be necessary to 
write out a, b, &c., explicitly ; but we can easily see that the 
degree of the resulting equation is 3(n— 2)’, since it is the 

resultant of three equations each of the degree n— 2, and each 
containing x, y, 2 in the first degree. 

71. Returning now to the equation A=0, we sce that it will 

have three roots 7» =0, or that the line in question will meet 
the curve in three points coincident. with a'y'z’, if the three 
conditions are satisfied U'=0, AU'’=0, A’U'=0. Let us con- 

sider first the case when 2'y’z’ is a double point ; then, as we have 
seen, U' and AU' vanish independently of «’y"z", and the third 

oF. WRF 

condition expresses that 2'y'z” must be on the polar conic of 
zy'z'. But clearly the point a”y"z” may be any point on either 
of the two tangents at the double point, since each of these 
meets the curve in three coincident points. Hence the polar 
conic of 2'y'z’ must be identical with these two lines; or, in 

other words, the equation of the pair of tangents at the double 
point is A*U'=0, or 

. ax? + Dy’ +2? + 2f'yz + 2q'2x + 2h'xy = 0. 

The double point, being one whose polar conic has thus been 
proved to break up into two right lines, is a point in the 
Hessian; and we shew directly that it satisfies its equation. 

For, by the theorem of homogeneous functions, the three 
equations U'=0, U'=0, U{=0, which are satisfied for the 
double point, may be written 

a'a' + h'y' + 9'2' =0, h'a' + b'y' +f'2 =0, gz + f'y' +2 =0, 
{ 
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whence eliminating 2'y'z’ we see that the equation of the 

Hessian is satisfied for the double point. 

72. The double point will be a cusp if the equation which 

represents the two tangents be a perfect square; that is, if 

be =f", ca=g’,ab=h*. These three are only equivalent to 
one new condition, for if any one of these be satisfied, and the | 
coordinates ’y'z’ of the double point have any finite magnitude, 

the others must also be satisfied. For, solving for the ratios 

a’: 2', y':2', successively from each pair of the equations at 

the end of the last article, we have 

a hf bg. Berd. Semen 
2. a-h. feta. ghawe 

y _gh-af _fg-—ch _ ca-g’ 
z  ab—-h* hf—bg gh—af’ 

Hence if ab=h’, and neither of the ratios is infinite, both 
numerator and denominator of every one of these fractions 

must vanish. 

73. The origin will be a triple point if all the second dif- 

ferential coefficients a, b, &c., vanish; for then A’U’ vanishes 
independently of a''y''z", and if the second differential coefficients 

vanish, the theorem of homogeneous functions shews that the 

first differential coefficients vanish likewise, and therefore AU" 
also vanishes. Hence every line through a'y'z’ meets the curve 
in three coincident points; and it is obvious that the three 
tangents at that point are given by the equation A*U'=0. 

There is no difficulty in extending the same considerations 

to higher multiple points. The point 2’y’z’ is a multiple point 
of the order &, if all the differential coefficients of the order 

k—1 vanish for that point, and the tangents at the multiple 
point are given by the equation A*U'=0. 

74. Let us now examine in what case a line can be drawn 

through a point a'y'z’ on the curve (but which is not a double 
point) so as to meet the curve in three points coincident with 
x'y'z': to fix the ideas we may in the first instance assume 
that the curve has no multiple points. We have seen, Art. 71, 
that every abe on such a line must fulfil the sunididons 
AU'=0, 4°U'= 
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The first condition expresses that the line must coincide with 

the tangent at a'y’z’, as is geometrically evident; the second 

condition expresses that every point on it satisfies the equation 
of the polar conic. The polar conic A*U’ must therefore, in 
this case, contain the line AU’ as a factor; and therefore the 

point «'y'z’ must be one of the points whose polar conics break 

up into factors; that is to say, it must be a point on the 
Hessian (Art. 70). And, conversely, every point where the 

Hessian meets Uis a point at which a line can be drawn to 
meet the curve ,in three coincident points; in other words, is 
a point of inflexion. For (Art. 64) the polar conic of every 

point on U touches U at that point; and if the point be also 
on the Hessian H, and the polar conic consequently break up 

into factors, one of these factors must be the tangent at a'y'z’. 

Any point on that tangent will then satisfy both the conditions 

AU'=0, A*U'=0. It follows, then, that every one of the in- 
tersections of the curves U, H will be a point of inflexion on 

U, and since H is of the degree 3 (n—2), that a curve of the 

n® degree has in general 3n (n—2) points of tnflexion. 

75. If the curve, however, have multiple points, the number 
of points of inflexion will be reduced. We have already shewn 
(Art. 71) that every double point on the curve is a point on 

the Hessian, but we shall now shew that it is a double point 

on that curve, and more generally that every multiple point 

on the curve of the order & is a multiple point of the order 

8k—4 on the Hessian. ‘The casiest way to shew this is to 
suppose that the multiple point has been taken for the origin, 

and consequently that the equation contains no terms in x and 
y below the degree &. Let us examine, then, the degree of the 
lowest terms in # and y in the second differential coefficients ; 

then evidently where there have been two differentiations with 
respect to x or y, the order of the lowest terms will be k—- 2; 

where there has been one differentiation with respect to x or y 
and one with respect to z, the order will be 4—1, and where 

both have been with ‘respect to z, the order will be &; that is 
to say, the order of the lowest terms will be 

k-—2, k-2, k, k-1, k-1, k-2 

in @5 Oy ey -f- yg ) -& respectively, 
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And combining these, we see that the order of the lowest 
terms in w and y, in every term of 

abe + 2fgh — af” — bg" — ch’, 
will be 34-4. 

But further, we say that every tangent at a multiple point 
on U will be also a tangent at the multiple point on H. For 
suppose the line x to be a tangent at the origin, and therefore 
(Art. 40), that the lowest terms in x and y all contain 2 as a 

factor, then evidently a will also be a factor in the lowest 

terms of each of the second differential coefficients in which 

there has been no differentiation with respect to x; that is to 

say, it will be a factor in 4, c, and f. But, on inspection, it 

appears that every term of : 

abe + 2fyh — af* — bg’ — ch’ 

contains either 8, ¢, or f. 

76. We are now in a position to calculate the amount of 
reduction in the number of points of inflexion which occurs 

when U has multiple points. If U has a double point, this 
will also be a double point on H, and the two tangents will 
be common to both curves; but (see note, p. 29) when two 
curves have a common double point and the tangents at it also 
common, this point counts for six in the number of their inter- 
sections. ‘he number of intersections therefore of U and H 
distinct from the double point will be reduced by 6, and we 

infer that if a curve have 6 double points, the number of its 

points of inflexion will be 3x (n —2) — 66. 
Similarly, if U have a multiple point of order 4, we have 

seen that it is a multiple of the order 3k—4 on H, and that 

there are k tangents common to the two curves. ‘The multiple 

point therefore counts among the intersections as 

k (8k —4)+k=6 x $k (k—-1). 

But we have seen (Art. 40) that the multiple point is equi- 
valent to 44 (4—1) double points; hence our present result may 

be stated, the multiple point has exactly the same effect in re- 

* It is a useful exercise on the method of Art. 56 to show-that at a double point 

Pee and the curve touch the tangents on opposite sides (Clebsch, Vorlesungen, 
p- 325). 
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ducing the number of points of inflexion as the equivalent number 

of double points. 

77. The case of a cusp on U requires special consideration. 
Let it be taken for origin and let «=0 be the tangent at it, so 

that the equation is of the form a’z"*+ u,z"*+ &c.=03; then it 
will be seen that the orders of the lowest terms in the second 
differential coefficients are 0, 1, 2,2, 1, 1 respectively; the terms 

in fact being 

a=22"", b= a mS, C= (n—2) (n—3) xe", 

du, n—4 er n~3 re du, n-8 psa ee 59 =2 (n—2) xz ei 

It will be found then that the order of the lowest terms in 

abe + 2fgh — af® — bg’ — ch’ 

is three, and that only in the terms abe and dg” is the order so 
low, but each of these terms contains 2 as a factor. The point 

on # is thus a triple point arising from a cuspidal point with 

a simple branch passing through it; and the two coincident 
tangents (or cuspidal tangent) coincide with the cuspidal 
tangent of U. Now when two curves have a common point 
which is double on one and triple on the other, that point counts 

for six intersections; and_if, moreover, two tangents at the 
double point are also tangents at the triple point, the curves 

have two more consecutive points common, and therefore this 

point counts for eight intersections. Hence if a curve have 6 

double points and « cusps, the number of its inflexions will 
be = 3n(n — 2) — 66 — 8x. | 

78. We shall hereafter shew how to use the equation A=0 
to discuss the conditions for double tangents; but the investi- 

gation being a little difficult, we postpone it for the present. 
We shall shew presently that the results already obtained, 

combined with the theory of reciprocal curves, are sufficient 
to determine indirectly the number of double tangents of a 

curve of the n“ order. 
The equation of the system of tangents which can be drawn 

to the curve from any point a’y'z', may be derived from the 
equation A=0 by the method used (Conics, Arts, 92, 294). Any 

Jn { 2% 
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point on one of these tangents is obviously such that the line 
joining it to a’y'z' meets the curve in two consecutive points, 
and in such a case the equation A =0 will have two equal roots. 
We obtain then the equation of the system of tangents, by 

equating to zero the discriminant of A considered as a binary 
quantic in A, pw. | 

Thus, for example, let U be of the third order. Then A is 

MU'+ AA + AWA + pU=0, 

where, for brevity, we have written A’ and A for AU’ and AU. 

The discriminant of A equated to zero is 

(27UU" + 4% —18AA'U') U=(A" -40U’') &’. 
Now JU, A, A’ are respectively of the third, second, and first 
degrees in xyz; the preceding equation then, being of the sixth 

degree, shews that six tangents can be drawn from a'y’z' to U, 

as we know already. 
The form of the equation shews that it represents a locus 

touching Uin the points where U meets A. ‘The other points 

where U meets the locus lie on the curve A*—4AU'=0. 
Hence, ¢f from any point six tangents be drawn to a curve of the 

third order, their six points of contact lie on a conic A=0, and 

the six remaining points, where these tangents meet the curve, lie 
on another conic A” —4Q4U'=0, which two conics have evidently 

double contact with each other in the points A=0, A'=0. 
If a'y'z’ be on the curve U'=0, then A reduces itself to 

NA'+AwA+y'U: equating the discriminant to zero, we have 

A*=4A'U, an equation of the fourth degree in vyz. Hence 
through a point on a curve of the third order can be drawn 

in general only four tangents. The tangent at the point in 

fact counts for two. 

79. And so in like manner in general. The discriminant of 
A or of w"U4+ pA + pA’ + Ke. is of the degree n (n — 1) 
in xyz, and (Higher Algebra, Art. 111) is of the form kU+ (A)*¢, 
where ¢ is the discriminant of A deprived of the first term. 

Hence the locus touches U at its points of intersection with A, 

as it plainly ought to do. | 
Each of the »(m—1) tangents meets the curve again in 

n—2 points, and the form of the discriminant shews that these 
n (n—1) (n—2) points lie on acurve ¢ of the order (n —1) (” - 2). 
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Moreover, ¢ is itself of the form h’A + (A’)*. Hence the two 

curves @ and yf touch each other at the points where the first 
and second polars of «'y’z’ intersect. 

Writing A, \°U'+ A" “*ywA' + &e. we see that the discrimi- 
nant may also be written in the form £U'+(A')’ $3 hence if 
x'y'z' is on the curve, and therefore U'=0, the discriminant 

contains the double factor A”, or the system of tangents con- 

sists of the tangent at a'y'z’ counted twice, and n? —n— 2 other 

tangents represented by 6=0. In the same way ¢ is itself of 

the form hA’+(A”)’y. If then w'y'z’ be a double point, and 
therefore not only U' but A’=0, ¢, which was already of 
the degree n’—n-— 2, contains the double factor (A”)*; that is 

to say, among the n’—n—2 tangents are included the two tan- 
gents at the double point, each counted twice, and therefore only 

n° —n—6 other tangents represented by y~=0. And so, in like 

manner, we can prove that the number of tangents which can 
be drawn from a multiple point of the order & is n’—n—k (k +1). 

The theory already given of the effect of multiple points 
upon the number of tangents which can be drawn from any 

point to a curve shews that the discriminant of A, which in 
general represents the n (n — 1) tangents, will include as factors 
the square of the line joining 2'y’z' to every double point of the 

curve, the cube of the line joining it to every cusp, the sixth 

power of the line joining it to every triple point, and so on. 

SECT. VI,—RECIPROCAL CURVES. 

80. We have seen (Conics, Art. 303) that the degree of the 

reciprocal curve is always the same as the class of the given 
curve, and vice versd. It is evident also, that to a double point, 
on either curve will correspond a double tangent on the other ; 
that to a stationary point on one curve corresponds a stationary 

tangent on the other; and, in general, that to a multiple point 

of the k order corresponds a multiple tangent of the same 
order; that the & points of contact of the multiple tangent 
correspond to the & tangents at the multiple point ; and that if 
two or more of these last coincide, so will the corresponding 
points of contact. 

81. We have seen that the general equation in Cartesian 
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or trilinear coordinates represents a curve which has no double 

or other multiple point, unless certain conditions be fulfilled. 
But the general equation represents a curve which ordinarily 

must have double and stationary tangents. For the abscisse 

of the points, where the curve is met by any line y=az + J, are 
found by substituting the value for y in the equation of the 

curve; and since we have two arbitrary constants a and 6b at 

our disposal, we can determine them so that the resulting equa- 

tion shall fulfil any two conditions we please. With one 

constant at our disposal, we could make the equation fulfil any 
one condition; for instance, have a pair of equal roots. The 
problem “ given a to determine 0, so that the resulting equation 
should have a pair of equal roots,” is no other than the problem 

to draw a tangent parallel to y=az. With the two constants 

at our disposal, we can either cause the resulting equation to 
have two distinct pairs of equal roots, or three roots all equal to 

each other. ‘The first is the problem of double tangents, the 

second that of stationary tangents and points of inflexion. 
Thus the double and stationary tangents may be counted as the 
ordinary singularities of a curve whose equation is expressed in 
point coordinates; all higher multiple tangents and all multiple 

points being extraordinary singularities which a curve will not 

possess except for special values of the coefficients of its equa- 
tion. But this is reversed if the equation be expressed in tan- 

gential coordinates. ‘Then the curve represented by the general 
equation ordinarily has double and stationary points and cusps, 

but no singular tangents. Hence double and stationary points 

on the one hand, and double and stationary tangents on the 
other hand, are equally entitled to be ranked among the ordinary 

singularities of curves; they are such, that if any curve possess 
the one its reciprocal will possess the other. 

82. We shall now denote 

the degree of a curve by m™, 
its class ee 
the number of its double points eS 
Sisnsevulvnrvea reves double tangents so tiie 
whnaseaeese agus ws... Stationary points i 1G 
ovécesivcdteseadecers: MeatlIonEry tangents: :4/ 4, 
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and the corresponding numbers for the reciprocal curve are 
found by interchanging m and n, 6 and 7,4 and «x. We have 
already obtained (Arts. 67, 77) the values of m and ¢ in terms 

of m, 8, «; hence, from the reciprocal curve we have the 

values of m and « in terms of nm, 7, ¢; and from these four 

equations (equivalent, as will presently be seen, to three equa- 

tions only) we ean obtain the value of rt in terms of m, 4, «, 

and that of 8 in terms of n, 7, +. We have thus Pliicker’s six 

equations, viz, these are 

(1) n=m’—m—25- 38x. 

(2) +t=38m*— 6m — 65 — 8x. 

(3) 27 =m (m —2) (m? —9) —2 (m? — m — 6) (26 + 38x) 

+48 (S—1)+128¢+9« («—1). 
(4) m=n'—n—-2Q7r—38.. 

(5) «=38n"—6n—6r—8u. 

(6) 26=n (n—2) (n*—9) —2 (n? —n—6) (27 + 32) 

+47 (7-1) +1270 +91 (c- 1). 

If from (1) and (2) we eliminate 6, or from (8) and (4) we 
Lf +f 

eliminate 7, the result is in each case 

(7) u-K=3 (n—™m), 

shewing that the four equations are equivalent to three only. 
This may also be written in the forms 

38m —K=3n—1, and 8m+4=38n+k«. 

By taking the difference of the equations (1) and (4), we obtain 

mv —26—3K =n" — 27 - Be. . 

Whence, replacing «— « by its value from (7), we obtain 

(8) 2(r-—8) =(n—m) (n+ m- 9). 

The last preceding equation, substituting therein for x and éj 

or for m and « their values, gives the foregoing equations (3) 

and (6). From (7) and (8) we obtain also 

(9) $m (m+3)— 6- 2e=4n (n+ 3)-—7T-2e, 

(10) 4(m—1)(m—2) —8—xK=} (n— 1) (n—-2)-7-1, 

(11) m*-26-8«=n"—-27r-30=m+n. 

The entire system of equations is, of course, equivalent to 
K 



66 RECIPROCAL CURVES. 

three equations only, and by means of it given any three of 
the six quantities m, , 5, x, 7, 4, we can determine the remain- 

ing three; thus m, 5, « being given, m is given by (1), « by (2), 

or more easily by (7), and + by (3), or more easily by (8). 

Ex. Suppose we were given m= 6, 6=4, x =6; then, by (1), »=4; therefore 

m—-n=2, n—m=-— 2, 

Hence (5) e—x=6, or: =0; 

n+m—9=1; thereforer—dO=—1; therefore 7 =3. 

83. Since when a curve is given its reciprocal is determined, 
it is evident that the same number of conditions must suffice 

to determine each. Now to be given that a curve has 6 double 
points is equivalent to 6 conditions. Thus, for example, a conic 

is determined by five conditions; but if it have a double point, 

that is, if it reduce to a system of two right lines, it is deter- 

mined by four conditions; by two points for instance on each 
of the right lines. So, again, to be given that a curve has a 

cusp is equivalent to two conditions. Hence (and Art. 27) 
a curve of the m‘* degree with 6 double points and « cusps is 

determined by 4m (m+ 3)—6—2« conditions, and its reciprocal 
by 4n(n4+8)—7—2¢ conditions. And the foregoing equation 

(9) shews that these two numbers are in fact equal. 
The foregoing equation (10) shews that the deficvency (Art. 44) 

is the same for a curve and its reciprocal. In a subsequent 
chapter it will be proved that this is true for all curves derived 
one from the other in such a way that to any point of one 
answers a single point or tangent of the other. 

If (with Prof. Cayley) we write 3m+., =3n+x«, =a, then 

everything may be expressed in terms of (m, n, @), viz. we have 

K=a—3n, 

t=a—3m, 

25=m’ — m+ 8n — 3a, 

2r=n'— n+ 8m-— 3a. 

The meaning of equation (11) will appear in the following 

chapter. 



CHAPTER III. 

ENVELOPES. 

84, Ira curve depend in any manner upon a single variable 
parameter, so that giving to the parameter a series of values, 
we have a series of curves; these all touch a certain curve, 
which is called the envelope of the system. ach curve is 

intersected by the consecutive curve in a set of points depend- 
ing on the parameter, and the locus of these points is the 

envelope. See Conics, Arts. 283, &c., where the problem of 
envelopes is considered in the case where the variable curve 

is a right line. 
Analytically, the equation of the curve may contain a single 

variable parameter, or it may contain two or more variable 
parameters connected by an equation or equations, so as to 
represent a single variable parameter. ‘The two cases are 

essentially equivalent, but it is often convenient to treat the 

second in a different manner, by a method of indeterminate 

multipliers, which we shall presently explain. The form of the 
second case, which is of most frequent occurrence, is when 

the equation of a curve contains the coordinates of a variable 
point, limited however to a fixed curve; or, as we may say, 

when the variable curve depends on a parametric point moving 

on a given parametric curve. For example, it was shewn 

(Conics, Art. 321) that the problem to find the reciprocal, with 
respect to 2+ y’+ 2°, of a given curve, is the same as to find 
the envelope of ax + By +z, where a, 8, y satisfy the equation 

of the given curve. Here the equation of the variable line 
contains the two variable parameters a: y, 8: y, these two 
ratios being connected by the equation of the given curve. 

85. Suppose, first, that the equation of the curve, say 7’=0, 
contains a single variable parameter ¢. ‘The curves belonging 
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to the consecutive values t, t-+dt, may be represented by the 
equations 7=0, 7,=0. These equations, or the equivalent 
equations 7=0, 7,—7'=0, determine therefore the coordinates 

of the points of intersection of the two consecutive curves. We 

have 7,=7+4,T.dt+&c., or T. — T=d,T.dt+ &c., where dt 
being infinitesimal, the terms after the first are to be neglected. 

The equations become therefore 7=0, d,7’'=0, which equations 

determine a set of points depending on the parameter ¢; and 
eliminating ¢ from these equations we get the equation of the 

locus of all points of intersection of consecutive curves of the 

system; that is to say, the equation of the envelope. 
An important case is where the equation contains ¢ rationally ; 

we may then, without loss of generality, take Z'to be an integral 

as well as rational function of ¢, and the process described for 
finding the equation of the envelope is equivalent to forming 

the discriminant of Z considered as a function of ¢, and equating 

it to zero. Thus, if a, b, c, &c. be any functions of the 
coordinates, and if 7’ be 

at” + nbt"* +4n (n-1) ct"? + &e., 

the equations of the envelope for the cases of most common 

occurrence, viz. n=2, 3, and 4, are respectively (see Higher 

Algebra, Arts. 193, 195, 207), 

(2) ac—b°=0, 

(3) ad’ + 4ac’ + 4b°d — babcd — 3b°c? = 0, 

(4) (ae—4bd + 3c’) — 27 (ace + 2bed — ad’ — Be — c*)? =0, 

and in using the last of these equations, when we desire to infer 

its order in the coordinates from knowing the order in which 

they enter into a, b, &c., it is useful to remember that when 

the equation is developed, the terms containing c° and c‘bd 

respectively cancel each other, so that the order of the envelope 
may happen to be lower than that of either of the two members 
of which the equation, as written above, consists. 

If we substitute in 7’ the coordinates of any point, and solve 

for ¢ the resulting equation a’t’+nb't’*+ &e.=0, there will 

evidently be n solutions; that is to say, the system of curves 
represented by 7’is such, that of them can be drawn to pass 

through any fixed point; and, from what has been just said, it 
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appears that if the fixed point be on the envelope two of these n 

curves will coincide. 

The case where 7’ depends on a parametric point may be 
reduced to that just considered if the parametric curve be a line, 

conic, or any other unicursal curve; for then (Art. 44) the 

coordinates of the parametric point can be expressed as rational 

functions of a parameter. 

Ex. 1. To find the envelope of at” + dt? +c = 0, where, as well as in the other 

examples a, b, &c. are supposed to be any functions of the coordinates. Combining 

the given equation with its differential with respect to ¢, we have 

nat” P + pb=0, (n—p) bt? +ne=9), 

whence, eliminating t, we have 

nraPcrP + pP (n — p)P) §n = 0, 
where the sign + is to be used when z is odd and — when it is even. 

Ex. 2. To find the envelope of a cos"@ + 4 sin"@ = c, where 0 is the parameter, 

We have = d,T = — a cos™@ sin8 + b sin™!0 cos = 0; 

Fe —L a 
n-2 hn-2 n-2 

whence tand =", cos 0 =, ——, sin = = see 
bn-2 d{a** aS bn-?) ita? a aed 

Substituting these values, and reducing, we find the equation of the envelope 
2 2 2 

In particular (as we saw, Conics, Art. 283), the envelope of a cos@+6sin@=ce is 

a* + b?=¢?, Conversely, any tangent to the curve 2™ + y™ = c™ may be expressed by 
2m—1) 2(m-1) 

xcos ™ @+ysin ™ 6=<¢, 
2 2 

the coordinates of the point of contact being x = ¢ cos”0, y = ¢ sin™0, 

This example might have been stated as an example of an envelope depending 

on a parametric point lying on a unicursal curve. For if we write cos@=a, 

sin@ = B, then a, B are the coordinates of a point lying on the circle a? + 6? = 1, 

and the circle being a unicursal curve, these coordinates can be expressed rationally 

in terms of a parameter. Thus if t be cos0+7sin0, we may write for @ or cos0, 

; (« + +) , and for £ or sin 8, 7 (: ~ ;) , and the equation, for example, aa + 0B =c, 

becomes : : 
(a — bi) t? — 2ct + (a + bi) = 9, 

whose envelope, as before, is 

(a + bi) (a — bt) = c?, or a? + 2 = c?, 

If we desired to avoid the introduction of imaginaries we might write tan 40=1t, 

and (as at Conics, Art. 283) express cos 0, sin @ rationally in terms of ¢. 

Ex. 3. Let the curve be 
a cos20+ 6 sin20+¢cos0+dsind+e=0, " 

Putting ¢ = cos@ + 7sin0, this becomes 

1 =) co ge 1 . 1 a 
a(# +5) bi (e-3) +e(¢+;)-ai(¢—,) +2¢=0, 
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or (a — bt) t + (c — di) + 2et? + (¢ + di) t+ (a+ bi) = 0. 

And applying to this the form already given for the discriminant of a quartic written 

with binomial coefficients, we have 

fa? +B? — 3 (c? +d?) + Je™} = 27 {3 (a2 +2) e+ ah (02 + a) e— Ja (0? — @) —Ied — he)’; 
or, clearing of fractions, 

{12 (a? + b?) — 3(c? + d?) + 4e7}8 = {72 (a7+ 67) e+ 9 (c?+ d?)e — 27a (ce? — d*) — 54bcd —8e5}? ; 

and, again, it is useful to remark that the expanded result will contain neither of 

the terms e°, (c? + d*) e, 

Ex. 4. To find the envelope of the chords of curvature of the points of a conic, 

The equation of the chord is (Conics, Art. 244, Ex. 1) 

x ‘ z 
— cosa — y sina = cos2a. 
a b 

- ae y? 3 2 2 

The envelope is therefore (= + i 4) +27 (5 _ ) = 0. 

Ex. 5. To find the equation of the curve parallel to a conic; that is to say, the 

curve obtained by measuring from the conic on each normal a distance equal to 7. 

This problem has been already solved (Conics, Art. 872, Ex. 2) by considering the 

parallel curve as the locus of the centre of a circle of constant radius touching the 

given conic. But it is easy to see that the parallel curve may also be considered as 

the envelope of a circle of constant radius whose centre is on the given conic; that is 

to say, we are to seek the envelope of (a — a)? + (y— )?—r?, where the parametric 

point af lies on the conic; and the conic being a beanie curve, this may be reduced 

to the case already discussed. Thus, let the conic be = = ee = 1, and write for a, 1 
62 

acos0@, for B, d sin@, when 

a? + B? — 2ax — 2By + 2? + y?— 41? 

becomes (a? — 6?) cos20 — 4ax cos @ — 4by sin @ + 2 (x? + y”) + a? + b? — 2r?, 

a form included under the last example, by the help of which we should obtain a 

result which, when expanded, is identical with that given, Conics, Art. 372, 

86. A little further notice may fitly be given to the case 
where 7’ is algebraic in ¢, and of the first degree in the 

coordinates, so as to denote a right line; that is to say, to the 

envelope of at"+nbt"*+&c. where a, 6, &c. are all linear in 

the coordinates. In this case the envelope is clearly a curve 

of the n™ class, being such that m tangents can be drawn 

through any assumed point (Art. 85); and since the discriminant 

of at’ + &e. is of the order 2(n—1) in the coefficients a, b, ke. 
(Higher Algebra, Art. 105), which each contain the coordinates 

in the first degree, the order of the envelope is 2 (n—1). Two 

other characteristics of the envelope can easily be obtained. 
It has ordinarily no points of inflexion. Ata point of inflexion 

two consecutive tangents coincide; and therefore Z7' and d,T 

represent the same right line; but in order that two linear 
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equations should represent the same right line, two conditions 
must be fulfilled, and it will generally not be possible to de- 
termine the single parameter ¢ at our disposal, so as to satisfy 

both conditions. 
The number of cusps on the envelope is 3(n—2). As the 

tangent at a point of inflexion on a curve contains three con- 

secutive points, so,reciprocally a cusp is the point of intersection 

of three consecutive tangents. At a cusp, therefore, on the 

envelope the three equations will be satisfied, 7’=0, d,7’=0, 

d,’T’=0, which may easily be reduced to 

T., = at" + (n— 2) bt'* +4 (n—2) (n— 38) ct" * + &e. =0, 

T,, = bt" + (n—2) ct" * +4 (n— 2) (n —3) dt”* + &e. =0, 

T,, = ct” + (n— 2) dt"* +4 (n —2) (n— 8) et” *+ &. =0, 

T,,, Z;., T,, being the three second differential coefficients if 7; 
considered as a binary quantic, had been made homogeneous by 

the introduction of a second variable. Now, if from these 
equations we eliminate 2 and y, which enter in the first degree 
into each, the resulting equation in ¢ will be of the degree 

3(n—2). If in fact we write 7, xU+yV'+2W, where U, V, W 
contain only ¢ and constants, we have obviously the determinant 

U5) Via Ww 

O45 Ves ake 

O25 Ko Wy ae 0, 

which gives the values of ¢ corresponding to the 3 (n — 2) cusps. 

The problem of finding the number of double points on the 

envelope is the same as that of finding the order of the system 

of conditions that 7’ should have two distinct pairs of equal 

roots (Higher Algebra, Art. 264), and the problem of finding the 
number of double tangents is the same as that of finding the 

order of the system of conditions that 7’ should represent the 
same line for different values of ¢; or, in other words, the 
number of ways in which it is possible to find a pair of values 

t', t’, for which we shall have the equality of ratios 

Gis pt = Fs VW 

It is not necessary for us, however, to deal with these problems 
directly, since we have already more than enough of conditions 
to determine 6 and 7, by Pliicker’s equations, Art. 82. Sub- 



72 ENVELOPES. 

stituting in these equations 2(n—1) and m for the order and 
class of the curve, and putting «=0, we find 

k=3(n—2), 6=2(n—2)(n—3), t=4 (n—1) (n—2). 

87. Let us now consider the case where the equation contains 
k parameters connected by &—1 equations. To fix the ideas, 

- suppose that we have the equation U=0 containing the three 
parameters a, 8, y connected by the two equations V=0, 

W=0. We may, if we please, regard 8, y, as functions of a, 
determined by the two equations V=0, W=0. ‘The process, 
in its original form, would then consist in the elimination of « 
from the given equation, and 

Ag dU dg , dU dy_ 
dB da’ dy da 

Here ‘s = are functions of a determined by 

Lae dB dV dy 
dB da* dy da 

ae WwW aW dW.dB dW dy 
dB da’ dy da 

and from these three oe we have y = 0, where 

=0; 

4 aU a dd 
does ‘da’? dB? dy 

AV. AV 0S, 

da? dB? dy 
iw aw aw |_, 
da? AB gl st 

and the final result is got by eliminating a, 8, y between 
U=0, V=0, W=0, vy =0. 

But v =0 is obviously the result of eliminating 2, « between 
the equations 

dU. AVG AW 
a a aa? 

Re a amp 
dp’ dp ap- 
aD ear aw 

Tere eg ee 
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so that the result may be got by eliminating «, 8, y, A, u 
between the last three equations and those originally given. 
This is the method of indeterminate multipliers referred to 
(Art. 84). 

88. An important case is where U is homogeneous in &+1 
parameters connected by 4—1 other homogeneous equations. 

This is really equivalent to the foregoing, since the £+1 
parameters may be replaced by the ratios which any & of them 
bear to the remaining one. But it is more symmetrical to retain 
all the &+1 equations given by the method of indeterminate 
multipliers, which equations in virtue of the theorem of homo- 

geneous equations are connected by a relation making them really 
equivalent to only & equations. ‘Thus, let U contain homo- 

geneously a, 8, y the coordinates of a parametric point moving on 
the parametric curve V=0; the method of indeterminate multi- 
pliers gives us, in addition to the two original equations, 

ao. OV: aU 2d ¥ dt aVe 
+r =0 7B = dy ta 

da. da ’ dB EJ 6s 

But these three are really equivalent to two, since if we multiply 
them by a, 8, y respectively, we get mU+2n V=0, which 

is included in the equations U=0, V=0. We have then four 

equations from which on account of the homogeneity we can 

eliminate the four quantities a, 8, y, X, and so obtain the equa- 
tion of the envelope. 

Ex. To find the envelope of U=(Aa)™ + (BB)™ + (Cy)™ =0, where a, B, y are 

connected by the relation V = (aa)" + (08)"+ (cy)" = 0. 

The method of indeterminate multipliers gives us 

mA™a™1 + \na"a™! = 0, MB™B™! + And"B™! = 0, MOMy™! + Ancty"1 = 0; 

ay An 
whence, writing for shortness oe pm", we have 

n n n 

a mn b \ mn Cc m-t 

Aa=1 (5) ’ Bp=n(5) ’ Cy =u (5) ; 

and substituting these values in U, we have the envelope required, viz. 

mn mn mn 
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89. Prof. Cayley has considered the case of a curve U=0 
the equation of which contains two or more independent para- 

meters. If, for instance, there are the two parameters a, A, 
then from the equations 

eliminating a, 8, we have the equation of an envelope. But 
observe that we can from these same equations eliminate the 

coordinates (2, y), and that the equations thus imply a relation 

¢ (a, 8) =0 between the parameters. This gives in the double 
system of curves U=0, a single system wherein the parameters 
satisfy this relation. ‘Taking any curve of the double system 

and the consecutive curve belonging to the values a+da, 

8+d8 of the parameters, the two curves intersect in a set of 
points depending in general on the value of the ratio d@ : da of 
the increments. But if the curve belong to the single system, 

then the set of points will be independent of the ratio in 

question ; the coordinates of the points of intersection satisfy 

the equations U=0, ue =0, Ee es and consequently the 
1 da dg 

dU 
equation U7 ae 8 7, + =3 48 = 0, whatever be the value of the 

ratio eae re we thus see that a curve of the single 

series is intersected by every consecutive curve of the double 
series in one and the same set of points, and that the locus of 

these points is the envelope. In the case of a single parameter, 

the envelope is the locus of a set of points on every curve of 

the system, and it may be termed a “ general envelope ”; in the 
case of the two parameters, the envelope is the locus of a set of 

points not on every curve of the system, but only on the curves 
of the single system wherein the parameters satisfy the equation 
d (4, 8) =0, and it may be termed a “special envelope.” And 

the like theory applies to the case of any number whatever of 

parameters: there is always a resulting single system of curves. 

89 (a). A difficulty in the theory of envelopes as given in 
Art. 84 has been explained by Prof. Cayley. In that article we 
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have considered an envelope as the locus of the intersections of a 
variable curve with consecutive curves of the system. But each 
curve has with the consecutive a number of common tangents 
depending on its parameter, and the envelope of these lines is 

also the envelope ; viz., each common tangent of the curve and 

its consecutive curve is at a common point of the same two 
curves atangent,of the envelope. Bat if the variable curve be of 
the order m and the class , the number of common points is = m’, 

and the number of common tangents = n”; and yet the common 
points and common tangents have to correspond to each other 
in pairs. The explanation depends on the singularities of the 

variable curve. Suppose this has in general 6 double points, 
« cusps T double tangents and «¢ inflexions; then, as is easily 

seen, the curve meets the consecutive curve in 2 points contiguous 
to each double point and in 3 points contiguous to each cusp 

(viz. there are thus 26+ 3« intersections), and besides in 

m*—26—3« points, and reciprocally the curve has with the 
consecutive curve 2 common tangents contiguous to each double 
tangent and 3 common tangents contiguous to each stationary 

tangent (viz., there are thus 27 + 3. common tangents), and there 
are besides n? — 27 — 34 common tangents: we have, see Art. 82, 

m' —28-3K =n" —27-—38r=m+n; each of the m*—25—3« 
points is (not a point of contact but) an ordinary intersection of 

the two curves, but it has contiguous to it one of the 

n’—27r—3+ common tangents of the two curves; and the 
envelope is thus cotemporaneously the locus of the m* — 26 —3« 
(=m-+n) points, and the envelope of the n*—27- 34 (=m-+n) 
tangents. 

It may be added that the complete envelope of the variable 
curve consists of the proper envelope as just explained together 
with (1) the locus of the double points twice, (2) the locus of 
the cusps three times, (3) the envelope of the double tangents 

twice, and (4) the envelope of the stationary tangents three 
times. 

In what precedes, the numbers m, n, 6, «, T, e apply to the 
curve corresponding to the general value of the variable para- 

meter; for particular values of the parameter, the variable curve 

may acquire or lose point- or line- singularities, and the several 
numbers be thus altered. 
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RECIPROCAL CURVES. 

90. Let it be required to find the envelope of a lme 
ax+ By +z, being given that a, 8, y are connected by a re- 
lation ==0. In other words, let there be given Y=0 the 

tangential equation of a curve, or its equation in line coor- 

dinates, and let it be required to pass to the equation in point- 
coordinates. Here then we have the two equations 2=0, 
ax-+By+yz=0, and the method of Art. 88 shews that the 
result is to be obtained by eliminating a, 8, y, \ from the two 
given equations combined with 

d= d= ad 
Fi Paces 0, a3t= 0, 7 

The solution of the reciprocal problem, given the point-equation 
S=0, to pass to the tangential equation, depends on a precisely 

similar elimination; namely, to eliminate x, y, 2, % between 

S=0, ax+ By +yz2=0, and 

dS dS dS 

a system of equations which would also present itself naturally 
from the consideration that if av+ By+yz be identical with 

the tangent at the point zyz, then the well-known form of 

the equation of the tangent (Art. 64) shews that a, 8, y must 

be respectively proportional to — aS ln 
dx’ dy’? dz’ 

. It has been mentioned (Art. 84, and Conics, Art. 321) that the 

problem of passing from the Soiait equation of a curve to its 
tangential equation is the same as that of finding its polar 
reciprocal with regard to 2*+y’+27=0. 

+Az=0. 

Ex, To find the tangential equation of (ax)™ + (by)™ + (cz)™"=0, We have here 

r r r (az +X 20, bymrt4%F=0, Cmr+ > Yao, 
whence immediately 

r+ +@"=0 
91. The method just indicated, however, is not always the 

most convenient one for finding the equation of the reciprocal. 
Let the equation of the curve be uv, +u,_,2+ 4,2 + &e. =0, 
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then we eliminate z by the equation aw + By+yz=0, and get 

fu, — 7% (a + By)u, + (ax + By)", .— Ke. = 0, 
which is now homogeneous in x and ¥; and the discriminant 

of this considered as a binary quantic, equated to zero 
gives the equation of the reciprocal curve, multiplied however 

by the irrelevant factor , Ae! 
Thus, for example, if it were required to find the reciprocal of 

e+y+2+b6meyz=0, 

eliminating z, it becomes 

(ac + By) + 6mayy* (aw + By) — 9 (w +y") = 
or (a — 4°, B+ 2may’, a8’ + 2mBy’, B* — y"La, y)* =0,* 

the discriminant of which is divisible by y*, the quotient being 

a’ + B° + 9° — (2 + 32m*) (B’y* + 9°a* + 2°86") 

— 24m’ ary (a? + 8° +9°) -— (24m + 48m") a? By’ = 0. 

In precisely the same way may be found the reciprocals of the 
cubic or quartic given by the general equation, the results of 

which are given at full length in subsequent chapters. 

92. One chief advantage of the foregoing method of 
obtaining the equation of the reciprocal is that it enables us 
immediately to write down the equation of the reciprocal in 

the symbolical form explained, Higher Algebra, chap. XIV. 
If a ternary quantic be reduced to a binary by eliminating 
z by the help of the equation ax+ y+ yz, we have imme- 

diately the following rules for the differentials of the binary 
quantic with respect to x and y, 

A. 4 €¢ 4: 4° Ba 
Siri Cer 

* We use the notation (a, 0, ¢, .. La, y)* for the binary quantic written with 

binomial coefficients ax” + nba* ly + 2” (n —1) ca”*y? + &e.; using the notation 

(a, b, c, ....02, y)” when the quantic is written without binomial coefficients (see 

Higher Alg@ra, Art, 104), 
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it becomes 

1{,(2 22 2), 9(4 aa a Bla, wed, de) Pe ee 2 

@i@ord «ai 

UGE, a, de 
or, in other words, the symbol applied to the binary quantic 
differs only by the factor y from the contravariant symbol («12) 
applied to the ternary. Hence, if a line ax+ Py+yz cut a 
curve so that the points of section satisfy any invariant relation 
whose symbolical form is known, we can at once write down 
in the same form the tangential equation of its envelope. For 
instance, the symbolical form of the discriminant of a binary 

cubic is known to be (12)* (34)? (13) (24); hence, if a line 

ax+ By+yz cut a cubic curve in three points whose discrimi- 
nant vanishes, that is to say, if it touch the curve, we must 

have (a12)’ (a34)* (413) (a24)=0. In like manner the discrimi- 
nant of a binary quartic is known to be of the form S*= 277”, 
where S and 7’ are two invariants, whose symbolical form is 
(12)*, and (12)”(23)’ (31)” respectively. It follows that the 

equation of the reciprocal of a quartic is of the form $* = 277”, 

where S is (a12)*, and Z’is (412)? (423) (a431)”, where S=0 de- 
notes the curve of the fourth class which is the envelope of lines 
cutting the quartic in four points for which the invariant S 
vanishes, and 7’=0 denotes the curve of the sixth class which is 

the envelope of lines cut harmonically by the curve, and for 
which therefore the invariant 7’ vanishes. 

93. We have already (Art. 78) given one method of forming 

the equation of tangents drawn from any point 2'y'z’ to the 
curve, but the problem is in effect solved when we are in 
possession of the equation of the reciprocal, or, in other words, 
of the condition that ax+ 8y+ yz should touch the curve. For 
we have only to substitute in that condition for a, 8, y respec- 
tively yz'—2y', zx’—axz', xy'—yx', when we shall have the 
condition that the line joining the points xyz, a’y’z’ shall touch 
the curve, a condition which obviously must be satisfied when 
xyz is a point on any tangent through a’y’z’ (see Conics, 
Art. 294). 
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Conversely, the equation of the system of tangents as found 
by the process explained (Art. 63), is readily obtained in the 
form, homogeneous function of (yz' — y'z, za! — 2'x, xy'—a'y)=0; 
and then, substituting for these quantities a, 8, y, we have the 

equation of the reciprocal curve. 

94, We have: then immediately a theorem corresponding 
to that of Art. 92, that when we are in possession of the tan- 
gential equation of a curve, we can at once write down 

symbolically the equation of the locus of a point, such that the 
system of tangents from it to the curve shall satisfy any given 

invariant relation. If we make z=0 in the equation of the system 

of tangents, we have the equation of a system of lines parallel 

to the tangents through the point wy, which will satisfy the 

same invariant relation. But from the method just given for 

forming the equation of the system of tangents we have 

MRI a BA Cahn a aw 

whence, as before 

0. 8 6) a ae o. 6 bh -bb-+leb-a2 
CUS Bye SEN. La & qa 

ov tee ye 
so that we have at once the rule, for every factor (12) in the 
invariant symbol required to be satisfied by the system of 

tangents to substitute (x12) and operate on the equation of the 

reciprocal curve. 

95. When the equation of a curve is given in polar co- 
ordinates, that of its reciprocal with regard to a circle whose 
centre is the pole may be found directly. If on any radius 
vector OP there be taken a portion OP’ equal to the con- 
secutive radius vector OQ, then obviously PP’ = dp, P’Q=pdo, 

tanOPQ="O*, and psinOPQ is the perpendicular on the 

tangent. ‘Thus let the curve be p” =a" cosmw; take the loga- 
rithmic differential, and we have 

d 
a tanmeado ; = — cotma, 
p Pp 
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and if 6 be the acute angle made by the radius vector with the 
tangent 9=90°—ma, and the perpendicular on the tangent 

=psind=pcosmw. The angle between the perpendicular and 
the radius vector =m, and between the perpendicular and the 
line from which » is measured is (m+1). But the radius 

vector of the reciprocal curve is the reciprocal of the perpen- 
dicular on the tangent; hence it is easy to see that the equation 
of the reciprocal curve is also of the form p"= a" cosmo, the 

new m being equal to — oe . This family of curves in- 

cludes several important species; for instance, the circle (m = 1), 

the right line (”=—1), the common lemniscate (m=2), the 

equilateral hyperbola (m=-—2), the cardioide (m= 4), the para- 
bola (m=— 4) &e. 

THE TACT-INVARIANT OF TWO CURVES. 

96. It was remarked (Art. 90) that the problem of finding 

the equation of the reciprocal curve is the same as that of find- 

ing the condition that a right. line should touch the given curve, 

both being solved by finding the envelope of ax+fy+ 2, 
where a, 8, y are parameters satisfying the equation of the 
curve. More generally, the problem of finding the condition 

that two curves U, V should touch (which condition is called 

their tact-invariant) is the same as that of finding the envelope 
of either, the coordinates being regarded as variable parameters 

satisfying also the equation of the other. For if the two curves 

touch, the coordinates of the point of contact ay satisfy the 

equation of both; and also since the tangents are the same, we 
must have at that point the differential coefficients of JU, 

respectively proportional to those of V. The condition of 

contact is then found by eliminating a, 8B, y, A, between 
U= 0, V= 0, and 

a ee Bs ee 
da 8 ae ap = dB il dy” dy 

but these are the equations given (Art. 88) for solving the 
problem of the envelope. 
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97. Let the degrees of U and V be m, m' respectively, and 
let it be required to determine the order in which the coeffi- 
cients of either curve, say V, enter into the condition of contact. 
Let the coefficients in V be a’, 5’, c’, &c., and let us take another 

curve W of the same order whose coefficients are a’, 6", c’, Kc. 

Then if in the condition of contact we substitute for each coeffi- 

cient a’, a’ + ka", &c., we shall have the condition that V+ kW 
should touch U, which will plainly contain & in the same degree 

as the order in which the coefficients of V enter into the 

condition of contact. This latter order, therefore, is the same 
as the number of curves of the form V+W, which can be 

drawn so as to touch U. But, as before, the point of contact 
must satisfy the equations 

Vi+kW,=AU, V,+kW, =U, V+ kW,=AU,, 

whence eliminating , 2, 

and the intersections of vy with U determine the points on U 

which can be points of contact with curves of the form V+W. 
Since the orders of U,, V,, W,, &c., are respectively m—1, m'— 1, 

m'—1, the order of VV is m+2m'—3, and the number of inter- 

sections is m(m-+2m'—3). ‘This then is the order in which the 
coefficients of V enter into the tact-invariant, and in like 
manner the coefficients of U enter in the order m' (2m + m'— 3). 

By making m’=1 we have the result already obtained that the 
condition that aw + Py + yz should touch a curve contains a, £, y, 

in the degree m (m—1), and the coefficients of the curve in the 

degree 2(m— 1). See also Conics, Art. 372. 
If U have a double point, then since we have already seen 

that U,, U,, U, pass through that point, and that if that point be 
a cusp they have there the same tangent, the same things are 

true for V5 and we see that the order of the condition of contact 
in the coefficients of V must be diminished by two for every 

double point, and by three for every cusp on U. The order is 
therefore m (m+ 2m'—3)- 26-3 or n+ 2m (m'—1). 

M 
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98. These results might have been otherwise obtained thus: 
Take any arbitrary line ax+by+cz, and equate to zero the 
determinant 

| ee ie ae « 

U, U, U, 
Vin Van Ve 

This equation represents the locus of a point, such that its polars 
with respect to U and V intersect on the assumed line. Now 
at a point common to U and J, the polars are the two tangents 
intersecting in the common point; there are, therefore, plainly 

only two cases in which a point common to U and V can 
lie also on vy; viz. either the assumed line passes through an 

intersection of U, V, or at that point the two curves have a 

common tangent. If then we eliminate between vy, U, V, the 

resultant will contain as factors the condition that ax + by + cz 
should pass through an intersection of U, V, and the condition 

that U and V should touch. But since in the resultant of three 

equations, the order in which the coefficients of each enter is 

the product of the orders of the other two equations, and since 
the orders of vy, U, V are respectively m+ m'—2,m, m’, the 
order of a, b,c in the resultant is mm’, of the coefficients of U, 

is mm’ + m' (m+ m' —2) =m’ (2m+ m' —2), and of the coefficients 

of V,m(2m'+m—2). Similarly the orders of the resultant of 
ax+by+cz, U, V, in the several coefficients are respectively 
mm', m',m. Subtracting these numbers from the preceding, 

we find, as before, that the orders of the condition of contact 

are m' (2m +m'—3), and m(2m'+m-—8) in the coefficients of 
U and V. 

EVOLUTES. 

99. We have hitherto only dealt with descriptive theorems, 
and have postponed the consideration of any questions belonging 

to the class described as metrical (Art. 1). The relation of 
perpendicularity belongs to the latter class, since, as explained 
(Conics, Art. 356), two perpendicular lines may be considered 

as lines which cut harmonically the line joining the two imaginary 

circular points at infinity. It is convenient not to exclude from 

this chapter the discussion of some important cases of envelopes 
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which involve the relation of perpendicularity, and the theorems 
may be made descriptive if we substitute for the two circular 
points at infinity any assumed points J, J, and wherever, in our 
theorems lines at right angles occur, substitute lines cutting J, J 
harmonically. 

One of the most important and the earliest investigated class 
of envelopes is that of the evolutes of curves. We have defined 
the evolute of a curve (Conics, Art. 248) as the locus of the 
centres of curvature of the curve; but the evolute may also be 

defined as the envelope of all the normals of the curve. For the 

circle of curvature is that which passes through three consecutive 
points of the curve, and its centre is the intersection of perpen- 
diculars at the middle points of the sides of the triangle formed 

by the points. But the lines joining the first and second, and the 
second and third points, are two consecutive tangents to the curve 5 

and the perpendiculars to them just mentioned are two consecutive 
normals; the centre of curvature is therefore the intersection 
of two consecutive normals; and the locus of all the centres of 

curvature must be the same as the envelope of all the normals. 
2 2 

Ex. 1. To find the evolute of at - wn 1. 

2 

The normal is (Conics, Art. 180) oe ey = = ¢, 

or, writing z’=a cos¢, y’=d sin ¢, 

an ee A 

coop sing ” 

an equation of the class considered Art. 85, Ex. 2, whose envelope is therefore 

asx? + b3y3 c3, 

Ex. 2, The normal to a parabola is (Conics, Art, 213), 

P(y—y') +: 2y' (c—2’) =0, 

or 2y/ + ( p? — 2pa) y’— p’y=0, 
an equation of the class considered Art. 85, Ex. 1, whose envelope, y’ being the 

parameter, is 
2 (p— 2x) + 27py?=0. 

Ex. 3. To find the evolute of the semicubical parabola py? =<’. 

The equation of the normal is 

32"? (y—y') + 2py' (ea!) =0, 
Substitute for y’ in terms of 2’ from the equation of the curve, divide by a'?, and 

(putting zt = t), the equation becomes 

Bt! + 2pt? — Spt yt —Qpa = 0, whose envelope is | 

P(p—18x)* = (4px + 72 y? + p?)?, 
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Ex. 4. To find the evolute of the cubical parabola p?y=2%, 

The equation of the normal is 

32’? (y—y!) +p? (w—2’)=0, 
or 32’ — 3p? yx’? + pta'— ptx=0. 

Now the envelope of 

at’ + 10dt? + 5et ++ f=0 

is (af? — 12d?e)? + 128 (2e?—3df) (ae? — adef—9d*)=0. 

Therefore the envelope in the present case is 

3p? (x? — 735y")? + 438 (2p? — Say) (dp* — Ep’wy — Z65y*) = 0. 

Ex. 5. To find the evolute of the cissoid (x?+ y?) «= ay?. 

This is a unicursal curve, and writing the equation in the form (a—z)y?=2', 

it is at once seen that this is satisfied by the values = The 
a a a 

1+ 04> 6 (1+ 6%)" 
equation of the tangent at the point in question is easily seen to be 

20%y —380’24+a—2=0, 

equation of the normal is therefore 

208+ (14868) y= 2 OF) 

or 264x + 36?y —267a+ by —-a=0. 

Forming the discriminant of this it will be found to contain as a factor («+ 4a)?+y?, 

the remaining factor giving the equation of the evolute proper, viz. 

yt + 32a? + Deas =0. 

Ex. 6. To find the evolute of «3 + ys =as, For any point of this curve we may 

write (see Art. 85, Ex. 2) 2’=acos*¢, y’=asin'¢. The tangent at that point 
will be 

i + ae =a 
cosp sing . 

and the normal x cosm — y Sing = a cos2¢q, 

or (x + y) (cos — sind) + (a — y) (cos + sin Pf) = 2a (cos? — sin? dp), 

x+y c—y £ 
or 2°a, sin(p +4) | cos(p+ 4m) 
whose envelope is (Art. 85, Ex. 2) 

(wt yy + (@—y)b = 208. 

100. The following investigation leads to the expressions for 
the coordinates of the centre of curvature, and for the radius 
of curvature ordinarily given in books on the Differential 
Calculus. In this and the next article we use Cartesian rect- 

angular coordinates. If a, @ be the coordinates of any point 
on the tangent, 2 and y those of its point of contact, the 

equation of the tangent is B—y= a (a— 2x); where _ which 
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we shall call for shortness p, is to be found from the equation of 

the curve. For the tangent passes through the point xy, and 
makes with the axis of 2 an angle whose tangent is p (Art. 38). 
The normal then being a perpendicular to this at the point ay, 

has for its equation 
| (ga) + (Bm ye 0 a cscccanevcoun sts (1). 

We have now to’ find the envelope of this line which contains 
the parameters x and y, which is given in terms of x by the 

equation of the curve. Differentiating then with respect to a, 
2 

and writing oe =q, we see that the point of contact of the line 

with its envelope is found by combining the equation with its 

differential 

Solving for a—a and 8—y from these equations, we have 

—p(l+p’) l+p a4-Zz= B a = 

Gh ese 
and the radius of curvature is given by the equation 

? 

1+p°) R=y{(a-a)'+ (@—y}=O4PL 
The values which have been obtained for the intersection of 

two consecutive normals might have been found for the same 

point considered as the centre of curvature. 

Take the equation of any circle 

(w —a)'+(y—B) =f, 
and differentiate it twice, when we have 

d 
(w- a) +(y—8) * =0, 

dy\" ay _ 
1+ () + (y— 8) 73 = 0. 

But if the circle osculate a curve at any point, then (Art. 48) 
PC an. . 

at that point “ ; “a , have the same values for both. We 

may therefore in these equations write for the differential coeffi- 

cients, the values p and g obtained from the equation of the 
curve, when they become identical with equations (1) and (2) 
already obtained from other considerations. 
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101. Since in practice y is not given explicitly in terms of a, 
but both are connected by an equation U=0, it is convenient 
to substitute for these expressions in terms of p and q, expres- 
sions in terms of the differential coefficients of U. Let us write 

as before 

dU dU d°U d*U ad°*U oak, 5 aM, Sea, Se =, oe dix dy dx , dy 9 dxdy ? 

then, since the coefficients of 2 and y in the equation of the 
tangent are L and M respectively, the equation of the normal is 

M (a — ©) —L(B— y) =O. cerecrreceeceees (1), 

whence differentiating 

(44952) (a— a) — (a4n$ ) (8-9) - - M+ LB =o. 

But from the equation of the curve, 1+ M = 0, whence sub- 
d dx 

stituting for “i we have 

(Lb — Mh) (a — x) — (Lh — Ma) (8 - y) + L?'+ M*=0...(2). 
Solving, then, between equations (1) and (2), we have 

Aer ed Arial eid -~M(L+M) 
= 7M? —-2hLM+bL? 7 oM®-2hLM+oL? 

2 2% 

whence R= a(t mt) 
aM* —2h LM + bL?* 

102. This expression can be made to assume a more symme- 
trical form by introducing the linear unit z, so as to give 

the equation the trilinear form. For, by the theorem of homo- 
geneous functions, | 

(n—1) L=an+hy+gz, (n—1)M=he+ by +fz, 

(n—1) N=gx+fy+cez, : 

whence (n—1) (bL—hM) =(ab—h’) «+ (bg —fh)z, 

(n— 1) (aM — hL) = (ab — h’) y + (af —gh) z. 

Multiplying the first equation by L, the second by M, and adding 

(a — 1) (BL? —2hL M+ aM’) = (ab —h’) (2L + yM) 

| +2 (bg fh) L + (af gh) M}, 
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or since, by the equation of the curve 7 +yM+2N=0, 

=—2{(fh—bg) L+ (gh—af) M+ (ab—h’) N}. 

Substitute for Z, 1, N their values given above, and we have 

(n—1)?(bL’— 2hIM+ aM’) =—2*(abe —af*—bg’—ch’ + 2fgh)=—Hz2’, 

and the expression for the radius of curvature becomes 

(n—1)? (LZ? + M”)3 

i 2H , 
R= 

For any point whose coordinates satisfy the equation H=0, 
the radius of curvature becomes infinite, and the centre of 

curvature at an infinite distance. This will take place when 

three consecutive points of the curve are on a right line, for 

then the circle through them becomes a right line, and its 
centre becomes at an infinite distance. We might then, from 

this value of the radius of curvature, arrive, independently of 

Art. 74, at the conclusion that the intersections of U and H are 

points of inflexion. The above equation gives us as conditions 
that two curves should osculate, that we should have in addition 
to the condition for ordinary contact L = @L’', M= 0M’, also 

ee ee 

G1 WF 
The double sign in the value of the radius of curvature is 

analogous to that in the value of the perpendicular on a right 

line ( Conics, Art. 34); and, of course, if we agree to use the sign + 
when the radius of curvature, and therefore the concavity of the 
curve, is turned in one direction, we must use the sign — when 

it is turned in the opposite direction. Since every algebraic 

function changes sign in passing through zero, we see that at a 
point of inflexion the radius of curvature changes sign, and 

that as we pass such a point the concavity of the curve changes 

to convexity, and vice versd (see fig. Art. 45). At a double point 

the radius of curvature assumes the form : , and its value must 

be determined by the ordinary rules in such cases. In fact, 
each branch of the curve has its own curvature at the point. 

At a cusp it will be found that the radius of curvature vanishes. 
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103. The length of any arc of the evolute is equal to the difference 

of the radit of curvature at its extremities, 
For, draw any three consecutive nor- zp 

mals to the original curve: let C be the 

point of intersection of the first and 

second, C’ of the second and third; then 
since, ultimately, CR =CS, O'S=C'T; 
CC’, which is the increment of the are 
of the evolute, is also the increment of 

the radius of curvature. 
Hence, if a flexible thread be supposed rolled round the 

evolute, and wound off, any point of it will describe an ¢nvolute 

of the curve CC’; that is, a curve of which CC" is the evolute. 
It was from this point of view that Huyghens, the inventor of 

evolutes, first considered them, and it was hence that the name 
evolute was given. 

<2 

= - mn 

ic’ 
i 
i 

104. We add here a formula which is sometimes useful 
for finding the radius of curvature of a curve given by polar 
coordinates. The polar equation p=/f(w), can be transformed 

into one of the form p=f(p), where p is the perpendicular 

from the pole on the tangent, and is given by the equations 

(Art. 95), 
, dw 

p=p sing, sph ie ae ; 

Let the distance from the pole to the centre of curvature be p,, 
and the radius of curvature 2, then (Euclid 11. 13) 

p, =p +’ 2kp. 
If we pass to the consecutive point of the given curve, p, and & 

remain constant, and differentiating, we have k= poe which 

is the required expression for the radius of curvature. 
When & has been thus expressed in terms of p, p, if we 

eliminate p, » between the equations 

p=f(p)) pi=p + B—2kp, p,’=p*—p', 
the last of which is obviously true, we shall have the relation 
which subsists between the p, and p, of the evolute; but it is 
not always easy to pass hence to the relation between the p, 

and the w, of the evolute. 
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As an example take the curve p"=a”™ cos mw, we find here 

p=p cosmm, and hence p”’=a"p, for the relation between p 

Pao ws a” for 
(m+1)p?  (m+1) p™ 

and p. And we then have R= 

the radius of curvature. 

The equations 

vr pl =p’ + B’—2Rp, 
a zoe p- —p° 

give at once p,”, p, each as a function of p, and thus virtually 

the equation of the evolute in the form p,=¢ (p,), but the 
elimination cannot be actually performed. 

It is however easy to find the equation of the reciprocal of 
the evolute in regard to a circle described about the pole as its 

centre. ‘Taking for convenience the radius of the circle to be 

=a; then if p, is the radius vector for the reciprocal curve, and 
w, the inclination to a line at right angles to that from which 

w is measured, we have p, =p sinmo, and then | 

a a 
Fer gue ay 

De COS"™mw SIN Nw 

Moreover (Art. 95), ,=(m+1)@j; wherefore the relation 

between p,, @,, or equation of the reciprocal of the evolute is 

Lice OE, a 
is cos ga l ma tL =a. 

It will readily appear that the locus of the extremity of the 
polar subtungent (see Conics, Art. 192) of any curve is the 

reciprocal of the evolute of the reciprocal curve. Thus this 

locus is a right line for the focal conics, since the evolute of the 
reciprocal then reduces to a point. 

105. When we are given the tangential equation of a curve 
u=0, we can obtain directly the line coordinates of the normal 

and the tangential equation of the evolute. Tor if a'6’y' be the 

line coordinates of any tangent, then « = ;+B a +y¥ = 0 is 

the equation of the point of contact ; and if v=0 be — taaigental | 

dv’ 

a 7 dy 
N 

equation of any pair of points JJ, then ad 7+ BS wei 
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is the equation of the pole of the given tangent with respect to 
LJ; or, in other words, of the harmonic conjugate in respect to 

these points of the point where J is met by the given tangent. 
When JJ are the circular points at infinity, the second equation 
represents the point at infinity on the normal; the two together 

determine the line coordinates of the normal; and if between 
them and the equation of the curve we eliminate a'@’y’, we shall 

have the equation of the evolute. In the system of tangential 
coordinates which answers to ordinary rectangular coordinates, 

the equation which represents the circular points LJ is a’ + 6’ =0, 

(see Conics, Art. 385), and the second equation a a +8 oa +y S 

is the well-known condition of perpendicularity aa’ + BR’ =0. 

Ex. To find the equation of the evolute of a central conic given by its tangential 

equation (see Conics, Art. 169, Ex. 1) a2a? + 6?82= 1. Here the two equations which 

determine the coordinates of the normal are a?aa’ + 6786’ = 1, aa’ + BP’ = 0, whence 

1 
aa’ = — Bf’ = 3 Substituting for a’ and f’ in a?a’”? + 0B’ = 1, we get the tangential 

; a PB 
equation of the evolute-.+ —=c', 

oie « 

106. We give next some examples of the more general 
problem in which that of evolutes is included, viz. (see Art, 99) 

to find the envelope of the harmonic conjugate of the tangent to 

a curve with respect to the lines joining its point of contact to 
two fixed points J, J. This line may be called the quasi-normal 
and its envelope the quasi-evolute. 

Ex. 1. Let the curve bea conic. Take the line JJ as the base of the triangle of 

reference, and let its vertex be the pole of this line with respect to the conic, then 

the equation of the conic will be of the form (ax + y) (x + by) = 2’, and that of any 

tangent will be 

6? (ax + y) — 202 + (a + by) = 90. 

The equation then of any line which together with this and the lines a, y, divides 

z harmonically will be of the form 

62 (ax — y) + (@ — by) = Mz. 

We determine M from the consideration that the line is to pass through the point 

of contact, for which we have @ (ax + y) = z, 62 =x + by. whence 

a Ow) __ 2 (a6?—1). 

~ Fao —1)?7~ O(@b—1)? 

2 (b= ab) 
and we find Fig 1h 8 ‘ 
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If we write then az —y = Y, « — by = X, 8z = (ab — 1) Z, the equation of the quasi- 
normal becomes 

altZ + 46°5Y + 40X —bZ=0, 

and the envelope is a curve of the fourth class whose equation is 

(abZ? + 4XY)8 + 272? (aX? — bY")? = 0, 

which represents a curve of the sixth degree having the points XZ, YZ for cusps, 2 

being their common tangent, and besides four other cusps at the intersections of 

abZ? + 4XY, aX? — bY 

Ex. 2. Let the conic pass through one of the points J, J; or, as we may say, 
let it be semicircular. Then we have say d= 0, and zz is on the curve, « being the 

tangent, The equation of the quasi-normal then becomes 

a®Z +42Y +4X=0, 
and the envelope is only of the third class, its equation being 64Y? + 27a?XZ?= 0, 

which represents a cubic having YZ for a cusp and X¥ for a point of inflexion. 

If the curve pass through both J and J; making a and 5 both = 0, we see that the 

equation of the quasi-normal reduces to 6?7Y+ X, and that the line therefore passes 

through a fixed point ; namely, the intersection of X, Y, the tangents at J, J. 

Ex. 3. Let the conic touch the line JJ, The most convenient lines of reference 

then to choose are this line together with the two other tangents through J, J, and the 

equation of the conic is 

x? + y? + 2? —Qyz — zx — Qxy = 0, 

or @ (2e+ 2y— 2) = (wx — y)*. 

The equation of the tangent then is 

2x + 2y —2— 20 (x —y) + Pz = 0, 

and we have for the point of contact 

e—y = Oz, 2e+ 2y— 2 = Oz, 

The equation of the quasi-normal then is 

x—y—O(e@+y)=2z {0-30 (1 + &)}, 

or z— 6 (2n+2y+2)+2 (x-—y)=9, 

and the envelope is also of the third class, viz. the cuspidal cubic whose equation is 

27z (a — y)? = (2a + 2y +z), 

Ex. 4. The three preceding examples might also have been investigated by 

supposing the conic to have been given by its general equation. The tangent then 

at any point aGy being 

(aa +hB+gy) «+t (ha+bB+fy) 4+ (ga+fB + cy) 2=9, 

the quasi-normal is 

¥ {aa + hB + gy) x — (ha + 6B +fy) y} = (aa? — bp? + gay — fBy) ¢. 
We have then to find the envelops of 

aza® — ba? + (fy — ga) y? + (by — fz — ha) By + (hy + gz — az) ya, 
where a, B, , are parameters, also satisfying the condition 

aa? + bB? + ey? + 2fBy + 2gya t+ 2haB = 0. 

And (Art. 96) the envelope is formed by the process given (Conics, Art. 872) for 

finding the condition of contact of two conics. We must form then the invariants 
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of this system of quadratic functions, and the discriminant of the first is 22S, 

where S is 

(ab — h?) (ax? — by?) + (bg? — af?) 22 + 2b (gh — af) yz — 2a (hf — bg) az. 

We have 

© = — (ab — h?) (ax* — 2hay + by”) + (Baf? + 38bg? — 4abe — 2fgh) 2? 

+ (4bgh — 2abf — 2fh*) yz + (4abf — 2abg — 2gh*) xz. 

©’ vanishes and the envelope is therefore 27 Az?S? = 63, which, as before, is of the 

sixth degree having six cusps, two of which lie on z. But first let z touch the 

conic, then ab—h?=0, and S and © take the form Lz, Mz where L and La are 

linear and the envelope takes the form zl? = M3, and is a cuspidal cubic having z 

as a stationary tangent. Secondly, let the conic pass, say through J or yz, then 

a=0, S becomes 6 (hy + gz), and © takes the form (hy+gz) M. The equation 

then becomes divisible by (hy + gz)’, and the envelope is of the form 2? (hy + gz) = IZ*. 
It will be observed that hy + gz is the tangent to the conic at the point J, and that 

it is an inflexional tangent of the envelope. 

107. In general, as Professor Cayley has remarked, if 

Lx+My+ Nz be the tangent at any point 2’y’z', and aBy, 
a'B'y' the coordinates of J, J, the equation of the quasi-normal is 

%, Y, & XH, Y;, % 

(La! + Mp’ + Ny)| a’, y', «| + (La+ MB +My) |a!, y, 2'| =0. 
a, B, é f a, B, ry 

For the two determinants, which we shall call for the moment 

A, 4’, severally represent the lines joining 2'y’z’ to J and J, and 
since the tangent passes through their intersection we must 

‘have an identity of the form Lx+ My+Nz=AA- Bd’. 
Substitute successively in this identity a'@’y' and aSy for ayz, 

and we determine A and Bas proportional to La’ + Mp’ + Ny’ 
and La+ MB + Ny, and therefore the equation of the harmonic 

conjugate of the tangent with respect to A, A’ is of the form 

written above. 

108. Let us examine more particularly the case where one 
of the points a@y is in the curve, and, for simplicity, we take 

its coordinates 1, 0,0; that is to say, we suppose the point to 

be yz; and we take the line z to be the tangent at it; and we 

shall prove that the envelope contains z as a factor. We 
may also without loss of generality take the second point 

as 0,0, 1 oray. Making 8 andy, a’ and #’ =0 in the preceding 

— equation, it becomes 

N (yz! —2y') + L (xy — yx) = 0. 
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Let us suppose now that 2’, y’, 2’ are expressed in terms of a 
parameter ¢, the point 2, 8, y auswering to the value ¢=0, and 

we must have ¢ as a factor in the expression for y’, and ¢ in 
that for 2’, in order that the equation of the tangent may 

reduce to z=0. In general, since the tangent is the line joining 

the point «'y'z’ to the consecutive a’ + dx’, y' + dy’, 2'+ dz’, its 
equation is F 

x (y'dz' — z'dy’) + y (z'dx' — a'dz') + 2 (a'dy' — y'dz') =0. 

L, M, N are the coefficients of x, y, z in this equation, and ¢ is 

a factor in M, and ¢#’in LZ. If then the equation of the quasi- 

normal be arranged according to the powers of ¢, it will be 

found that there is no term independent of ¢, and that z is 

a factor in the coefficients both of ¢ and of ¢. Now the 
discriminant of a function A+ B¢+ Ct°+&e. is of the form 

Ag+ By (Higher Algebra, Art. 107), and therefore a factor 
which enters into both A and B will be a factor in the 

discriminant. Also if in the discriminant we make B= 0, the 
remainder will be of the form A(Af+ C*W): thus it appears 

that the envelope will have z for an inflexional tangent (compare 
Art. 99, Tux. 4). 

109. It has been remarked (Conics, Art. 385) that the 
relation of perpendicularity may be further extended by 

substituting for the points J, J, a fixed conic, and by regarding 

two lines as perpendicular if each pass through the pole of the 

other with regard to that conic. In this extension then, what 

answers to the normal, is the line joining any point on a curve 
to the pole of its tangent with respect to the fixed conic; or, in 
other words, the line joining the point to the corresponding 

point on the reciprocal curve with regard to the fixed conic. 
Thus the curve and its reciprocal have the same normals. For 
example, taking the fixed conic as 2° + y* +2”, the coordinates of 

the pole of any tangent to a curve are L, M, N, and the 
equation of the line answering to the normal is 

a (Mz' — Ny’) + y (Nx' - Lz’) + 2 (Ly' — Ma’) =0. 

If the curve were a conic, this equation would be of the second 

degree in w'y’z', and the envelope would be found as in Ex. 4, 
Art. 106, 
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110. The following remarks are a useful preliminary to the 

investigation of the characteristics of the evolute of any curve. 

The normal at any point of a curve at infinity coincides with the 

line at infinity ttself. It has been already remarked (Art. 105) 

that we may generalize the conception of a normal by substi- 

tuting for the two circular points at infinity two finite points 

I, J, and that then if the tangent at any point P meet L/ in J, 
and if M' be the harmonic conjugate of J with respect to J, J, 

the line PM" may be regarded as the normal. From this 

construction it appears at once, that if the point P be on the line 

IJ, then PM’ will coincide with that line. An exception occurs 

where the puint P coincides with either J or J; then the points 

M, M' coincide, and the normal coincides with the tangent (see 

Conics, Art. 382, note). Thus, then, ¢f the curve pass through 

either of the circular points at infinity, the normal at that point 

will coincide with the tangent. 

111. We proceed now to determine the class of the evolute 
of a given curve; or in other words, the number of normals to 
the curve (tangents to the evolute) which caz be drawn through 

any point. By the law of continuity, the number of normals 

is the same, whatever be the point through which they pass. It 

is enough, therefore, to examine the case when the point is at 

infinity. But the number of normals, distinct from the line at 
infinity itself, which can be drawn parallel to a given line, is 

equal to the number of tangents which can be drawn parallel to 
a given line, that is, to the class of the curve. And we have 

seen in the last article that the m normals, corresponding to 

the m points of the curve at infinity, coincide with the line 
at infinity, and therefore also pass through the assumed point. 
Thus then the number of normals which can be drawn to the curve 

from any point, is equal to the sum of the order and class of 

the curve—or, what is the same thing, the sum of the orders of the 
curve and its reciprocal. If the line at infinity be a tangent to 

the curve, then the number of finite tangents which can be 

drawn through a point at infinity, is plainly one less than in the 
general case, and therefore the number of normals is also one 

less. Thus four normals can be drawn from a given point to a 

conic in general, but only three to a parabola. 
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Again, if the curve pass through either circular point, we 
saw (Art. 110) that the normal at that point does not coincide 

with the line at infinity, and therefore, that for every passage 

through a circular point, the number of normals is one less 
than in general. Thus in the case of the circle which passes 

through the two points J, J, the number of normals through 

a point is reduced*by two, and is two instead of four. Thus 

then if m and » be the degree and class of a curve which passes 

f times through a circular point, and touches the line at infinity 

g times, the class of the evolute is 

n=m+n—f—g. 

These results might equally have been obtained from the con- 

sideration that if in the equation of the normal M (a—x)=L(8—-y) 

we suppose a, 8 given and a, y variable, we shall have the 
equation of a curve of the m degree, whose intersection with 

the given curve determines the points the normals at which 

pass through a, 8. If the curve have no multiple points, the 

number of intersections will be evidently m* or m+n: and there 

is no difficulty in showing, that in the general case of 6 double 
points and « cusps, the order is m’ — 26 — 3x, that is m+n. 

112. We next examine the degree of the evolute, and again 

it suffices to examine the number of points in which the line at 
infinity meets the evolute. Now if two consecutive normals 

to the original curve be parallel, the corresponding tangents will 

coincide; the points at infinity therefore on the evolute arise 

in general from the points of inflexion on the given curve. 

But to these must be added those arising from points at infinity 

on the given curve, which points (Art. 111) also give rise to 
points at infinity on the evolute. But we say, moreover, that 

these will be cusps on the evolute having the line at infinity for 
their tangent. Let M be any point on the line Z/, and ’ its 

harmonic conjugate, then we saw that the line answering to the 

normal at JM is the line //: but if the consecutive points of the 
curve, antecedent and subsequent to M be Z and N, their 

normals are LM’, NM’. Hence &M’ is a point through which 
three consecutive tangents to the evolute pass, and is therefore 

a cusp having /J for its tangent. Since then the tangent at a 
cusp meets the curve in three consecutive points, the m points 



96 EVOLUTES. 

at infinity of the given curve, give rise to the same number 

of cusps on the evolute which are met by the line at infinity in 
3m points. If we add these to those already obtained, we find 

the degree of the evolute =4+3m, or the number which we 
have called a (Art. 83). 

If the curve pass through either point Z, J, we have seen 
that these give rise to no points at infinity on the evolute, and 

therefore the degree will be less by three. 
If the line LJ touch the curve, the normals for the two 

consecutive points in which it meets the curve coincide with L/; 

we have therefore two consecutive tangents to the evolute 
coincident, or a point of inflexion on the evolute having LJ for 

its tangent. As this takes the place of two cusps which we 

have when JJ meets the curve in distinct points, the degree of 

the evolute is reduced by three; and if we use f and g in the 

same sense as in the last article, we have for the degree of the 

evolute 

m'=a—3(f+g).* 
The values given show that the degree and class are the same 

of the evolute of a curve and of its reciprocal as Art. 109 might 
lead us to expect. 

113. There will in general be no points of inflexion on the 

evolute. For if there be such a point, two consecutive tangents 
to the evolute (normals to the curve) coincide; but it is plain, 

on considering the figure, that two consecutive normals cannot 
coincide unless the corresponding tangents coincide with their 

normals and with each other, which could only happen in the 
exceptional case where the original curve had an inflexional 

tangent passing through J or J. 
If, however, the curve touch LJ, we have seen (Art. 112) 

that there is a point of inflexion at infinity, and if the curve 
pass through J or J (Art. 108), that the evolute has an 

inflexional tangent passing through the same point. We have 
thus conditions enough to determine all the characteristics of 
the evolute, viz. : 

m'=a-3(f+g),n=mt+n—(f+g),¢=(f+9); 

* Some particular examples show that these formule must be modified when J or 

J is a multiple point at which two or more tangents coincide. Thus if either be a 

cusp, the diminution of degree is 4 not 6, 

Ss 
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whence by Pliicker’s formula «’ =3a—3 (m+n)—5 (f+), 
a’ =38a—8(f+g); and we can in like manner write down the 
number of double points of the evolute, and of its double 

tangents; these double tangents are, it is clear, double normals 

of the original curve. | 
The “deficiency” (Art 44) of the evolute is the same as 

that of the original curve, as may be verified by using the 
expression for the deficiency 4 {a —2(m+n)}+1.* 

114. The number of cusps on the evolute may also be 
investigated directly. We shall have a cusp on the evolute, 

when three of its consecutive tangents (normals to the curve) 

meet in a point; or, in other words, when four consecutive 

points of the curve lie on a circle. If this be ‘the case the 
radius of curvature remains constant when we pass to a con- 

secutive point. Differentiating then the expression given 

(Art. 102) we have } r 

(L'+ M) (a dnt dy) = 3H ((aL-+hM) de+ (LL +b1)dy), 

and eliminating dx: dy by the equation Ldx+ Mdy=0, we 

have 

rat: 7) = 3H {(a—b) LM +h(M? — L)}. 

Since # is of the order 3 (m—2), Z and M of the order m-— 1, 
and a, 6, h of order m—2, this equation represents a curve of 

the order 6m—10, whose intersections with the given curve are 

the points where the osculating circle has contact of the third 
order.t Ifthe curve have no multiple points, these m (6m — 10) 
points together with m points at infinity give rise to m (6m —9)’ 

cusps on the evolute, a number in accordance with the 
preceding formule. 

We might, in like manner, investigate the characteristics of 

(i? 4+ WP) (a1 

* In general the deficiency of two curves is the same, if one is derived from the 

other by such a process that to one point on either curve answers one point on the 

other. 

+ In a subsequent part of the work the question of conics having with the curve 

contact of a higher order than the second is more fully considered, and a formula 

given for the aberrancy of curvatwre or deviation of the curve from the circular 

form, 

O 
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the evolute in the more general sense of the word indicated 

Art. 109, and we should find that the formule we have already 
obtained will apply, f being now the number of contacts of 
the curve with the fixed conic, and there being no aingolarity 
answering to g. 

CAUSTICS. 

115. As a further illustration of envelopes, we add some 
mention of caustics, the investigation of which, though suggested 

to mathematicians by the science of optics, belongs purely to 
the theory of curves. ‘The subject has some historical interest, 

caustics being among the earliest questions, involving the 
problem of envelopes, actually discussed.* 

If light be incident on a curve from any point, the reflected 
ray is found by drawing a line, making with the normal the 
same angle which is made with it by the incident ray; the 
envelope of all these reflected rays is the caustic by reflection. 

It is easy to form the general equation of the reflected ray. 
Let the equations of the tangent and normal at the point of 
incidence be 77=0, N=0; then the equation of the incident 
ray is J’N— TN'=0, where 7’N' are the results of substituting 
the coordinates of the radiant point in 7’ and WN; the 

reflected ray then, which is the fourth harmonic to these three 
lines, will have for its equation 

T'N+ TN'= 

and the envelope can then be found by the preceding rules. 
Ex. To find the caustic by reflexion of a circle. 

The reflected ray is, by the preceding (a8 being the coordinates of the radiant 

point, and the tangent and normal being x cos@ + y sin@—r, and a sin 6 — y cos8), 

(a cos0 + 8 sin 6 — r) (x sin 8 — y cos6) + (x cos@ + y sin @ — ”) (a sin @ —'B cos 6) = 0, 

or (ay + Bx) cos26 + (By — ax) sin20+r («+ a) sind —r (y+ 8) cos6 =0, 

whose envelope is (Ex. 3, Art. 85) 

[4 (a? + B*) (a? + 9?) — 9? {((@ + a)? + (y+ B)*}]}* = 27 (Be — ay)? (2? + 9? — a? — f)?, 

116. Instead of finding directly the envelope of the reflected 
ray, M. Quetelet has given a method, which is more convenient 
in practice, of reducing the problem to that of evolutes; since 
the caustic would be sufficiently determined if we knew the curve 
of which it was the evolute. 

* The subject of caustics was introduced by Tschirnhausen, Acta Eruditorum 

1682, referred to by Gregory, Examples, p. 224. 
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“Tf with each point successively of the reflecting curve as 
centre, and its distance from the radiant point as radius, we 
describe a series of circles, the envelope of all these circles will 

be a curve, the evolute of which will be the caustic required.” 
‘The following (due to M. Dandelin) is a more convenient form 

of stating the same theorem: Jf we let fall from the radiant 
point O the perpendicular OP on the tangent, and produce tt 
so that PR = OP, then the caustic is the evolute of the locus of ft. 

For RT is evidently the di- f 

rection of the reflected ray, and KN 
if we draw the consecutive ray, 
then, since OT, TV; O71", T'V, P| __\T T 
make equal angles with 77", =| oe 

OT+ TV = OT' + T'V (Conics, 
Art. 392); therefore VR = VR’, 0 ¥ 
and therefore V£ is normal to the locus of 2. 

The locus of /, the foot of the perpendicular on the tangent, 
we call the pedal of the given curve. The locus of £& is plainly 
a similar curve, and its equation can always be written down 

when the equation of the reciprocal of the given curve with 

regard to 0 is known, by substituting ; for p in the polar 

equation of that reciprocal. Thus the caustic by reflexion, of a 
circle, is the evolute of the /imagon, (see Ex. 5, Art. 55), since its 

equation (the radiant point being pole) as found by the rule 
just given is of the form 

p=p(itecosa). 

117. If light be incident from any point on a curve, the 

refracted ray is found by drawing a line, making with the normal 
an angle whose sine is in a constant ratio to that of the angle 

made with the normal by the incident ray, and the envelope of 
all these rays is the caustic by refraction. 

M. Quetelet has reduced in like manner these caustics to 

evolutes by the following theorem, the truth of which it is easy 

to see. “If with each point successively of the refracting curve 
as centre, and a length in a constant ratio to its distance from 

the radiant point as radius, we describe a series of circles, the 
envelope of all these circles will be a curve whose evolute is the 
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caustic by refraction.” In fact, the method of infinitesimals 

readily shows that, in consequence of the law of refraction, the 
increments of the incident and refracted rays are connected by 

the relation mdp+dp'=0, it follows then that if, on the 

refracted ray produced, 7 be taken =mOT, T'R'=mOT", 

then VR = VA’, and therefore the refracted ray is normal to 
the locus of &. 

We add geometrical investigations in relation to two 
"interesting cases of caustics by refraction. 

(1) Zo find the caustic by refraction of a right line. | 

Let fall a perpendicular on the line, and produce it so that 

AP=PB; and let a circle be described L 
through A, B, and the point of incidence A 
fi; let LR be the refracted ray; then 
obviously the angle ALB is bisected, and aN O 

AL+LB; AB:: AL: AO \ 
: ::sn AOL: sn ALO; y 

but AOL is the angle which the re- a 
fracted ray makes with the perpendicular to the line, and 
ALO=BLO=BAL is the angle which the incident ray makes 

with the perpendicular; the ratio of AL +Z8B to AB is there- 

fore given; the locus of Z is an ellipse, of which A and B are 

the foci, to which ZA is normal, and of which, therefore, the 
caustic is the evolute. 

(2) Yo find the caustic by refraction of a circle. 

Let a circle be described through A, the radiant point, and 
2, the point of incidence, to touch Of; then 

the point Bis given, since OA. OB= OL’. 

The ratio RA: RB is by similar triangles ™, 
equal to the givenratio04: O08. The ratio 
RA: RM is equal to sn kbA: sn khBM; 
but RBA = PRA, the angle which the in- / 

cident ray makes with the normal to the | 
curve, and RBM=PRM, the angle which 
the refracted ray makes with the same % 
normal; hence the ratio RA: LM is also 
given. Now since 

AM. RB+ MB. AR= RM. AB, 

A 

ee ee 
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if we denote the distances of M from A and B by, p, p’, these 
distances are connected by the relation 

RB rat 

Rut Ru? = 4: 
Now, a Cartesian is defined as the locus of a point whose 
distances from two, given foci are connected by the relation 

mp + np'= c; and it is proved precisely as at Conics, Art. 392, that 

the normal to such a curve divides the angle between the focal 

radii into parts whose sines are in the ratio m:n. Hence the 
locus of WM is a Cartesian, of which A and B are foci, and 

it is obvious that JZ is normal to the locus, and therefore the 
caustic is the evolute of this curve.* 

The ellipse in (1) and the Cartesian in (2) are curves cutting 

at right angles the refracted rays;:the curve cutting at right 

angles the reflected or refracted rays is termed the secondary 
caustic. 

PARALLEL CURVES AND NEGATIVE PEDALS. 

117 (a). It remains briefly to notice one or two other classes 
of envelopes. We have already mentioned the problem of 
finding the curve parallel to a given one.. This may either 

be treated as that of finding the envelope of a tangent parallel 

to each tangent of the given curve, and at a fixed distance 
from it, and so of finding the envelope of 

Lae + My + Nz =kz /(L’ + MU”), 

or else, as we have already seen, it may be regarded as 
that of finding the envelope of the circle of given radius 
(w—a)’+(y— 8)*=k’, whose centre a satisfies the equation of 
the curve, or, what is the same thing, of finding the condition 
that this circle should touch the given curve. The result will 

evidently be a function of k*. In some exceptional cases to be 
mentioned presently, the result can be resolved into factors, as 

for instance, the parallel at a distance & to a circle of radius @ 
consists of a pair of circles of radii a+%. But, ordinarily, such a 

resolution is not possible, and the two tangents at the distance 

* This proof was communicated to me by Dr. Atkins, 
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+ from any tangent will touch the same parallel curve. 
Hence, the number of tangents which can be drawn parallel 
to any given line is double that which can be so drawn to the 

original curve, or n'=2n. In like manner, to each inflexional 
tangent on the original correspond two on the parallel curve, 

or ?’=2s. ‘To find the order of the parallel it suffices to make 
k =0 in its equation, which will not affect the terms of highest 
dimensions in the equation; but what was proved for the conic 

(Conics, Art. 372, Ex. 2) is true in general, that the result of 
writing &=0 in the equation of the parallel is the original curve 
counted twice, together with the two sets of n tangents drawn 

from the points J, J to the curve. The order then is 2 (m+n). 
There is no difficulty in seeing how these numbers are modified 
if the original curve touch the line at infinity or pass through 

the points J, J. We arrive in this way at Professor Cayley’s 
formule 

m' =2(m+n)—2( f+), n' =2n, v =2¢=— 6m + 2a, 

Ke =2a—6 (f+ 9): fi =2 (n—g), 9 = 29. 
The parallel curve and the original have the same normals and 
the same evolute, but every normal to the parallel curve is so 

generally in two places, answering to the values + h. 

Ex. 1. To find the parallel to the ellipse or parabola. See Conics, Art, 372. 

2 

Ex. 2. To find the parallel to 23 + ye ~a*, The equation of any tangent is 
(see Art. 99, Ex. 6) 

xcosp+ysing =asin¢ cos¢. 

Hence, that of a parallel at the distance & is 

xcosp+ysing=k+asing cosq, 

whose envelope is (see Art. 85, Ex. 3) 

{3 (a? + y? — a®) — 4h?}8 + {27axy — 9k (x? + y?) — 180k + 8k)? = 0. 

This is one of the cases where the parallels answering to the values + & are different 

curves and not different branches of the same curve. 

The curve whose equation has been just obtained is the envelope of a line on 

which a constant intercept is made by two fixed lines. If the lines are at right 

angles, taking them for axes it is seen immediately that the equation of a line. whose 

length is a inclined at an angle ¢ to the axis of ris x sing + y cos@ = acos® sinlp, 

ccm whose envelope is x* + y* =a*. But consider fora moment a diameter and a parallel 

chord of a circle, and it is evident that if a line whose length is a subtend a right 

angle at any point, a parallel line at a distance Ja cos@ will make an intercept 

a sin ¢ on a pair of lines including an angle @, and equally inclined to the rectangular 

lines. Hence, obviously the envelope of a line whose length is a sing intercepted 

between the oblique lines is a parallel (answering to the value k = 3a cos) to the 
2 2 2 

envelope for the rectangular lines, z° + y° =a*, 

eg EE Oe ae a a ee ae 
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118. If ax+ Py++¥ be a tangent to a curve (the equation 
being expressed in ordinary rectangular coordinates), then 
evidently ax+By+y+k/(?+ 8’) is a tangent to the parallel 
curve; and it follows at once, that if we have the tangential 
equation of the given curve, we obtain that of the parallel by 
writing in it for y,y+p where p is /(a’+ 8’). Hence the 
tangential equation of the parallel to a curve whose tangential 

equation is V=0 is 

V+kp Tt+a nl kp” oo 

The equation is cleared of radicals by transposing to one side 
the terms containing the odd powers of p and squaring, when 
we obtain an equation the order of which is double that of the 
original tangential equation, in conformity with what was proved 
in the last article. 

+ &e. = 0. 

Ex. 1. To find the tangential equation of the parallel to — ane Y= me Be ke 

tangential equation of the ellipse is (see Conics, Art. 169, Ex, 1) a®a? + “86? = y’, whence 

that of the parallel is 

ara + U9 = (y + kp)’, 
or {(a? — A?) a? + (0? — hi?) B? — 7}? = 4h? (a? + 2) vy 

Ex. 2. To find the tangential equation of the parallel to the parabola y? = pa. 

The corresponding tangential equation is pB? = 4ay; hence that of the parallel is 

(pP? — dary)? = 16470" (a? + B*). 

Ex. 3. To find the tangential equation of the parallel to a circle. The tangential 

equation to the circle whose centre is the point a, b, and radius c, is (Conics, Art, 86) 

(aa + bB + y)*? = c? (a? + B?); therefore that of the parallel is 

(aa + bB + y + kp)? = ¢’p?, 

which breaks up into factors, and gives 

aat+bB+yt+kp=+e; 

whence, clearing of radicals, 

(aa + 6B + y)? = (¢ + k)? (a? + A), 

representing a pair of concentric circles whose radii arec+4%, as is geometrically 

evident, 

119. In precisely the same. manner, as in the last example, 
it is proved that if the tangential equation of a curve be of the 

form wv’ (2° + 8”) =v’, the parallel will break up into two factors 
of like form with the original, the parallels answering to the 
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values + being distinct curves, and not different branches of. 

the same curve. For suppose that by the substitution of y + kp 

for y, u becomes u+whkp +u'k'p* + &e., and similarly for v; 
then up” = v" becomes 

(wtwhkp +u'k'p® + &e.) p? =(v+ukp + v'k'p? + &e.)’, 

which is at once resolvable into factors which can be rationalized 

separately, giving the result 

fu + u'kip? + &e. + (vk +0'"k'p? + &e.)}*p” 

={v+v'k'p’ + &e. + (whkp’ + wu h'p* + &e.)}*. 

Thus the equation given for the parallel of a conic is of the 

form considered in this article, and it can be now easily verified 
that the parallel to that parallel at the distance £' consists of 
the two parallels to the conic at the distances 4 +k’, as manifestly 

ought to be the case. ‘Take again the curve already mentioned, 

ao + ye =a, whose tangential equation is (a?+*)7= a*a' 8, 

which being of the form here considered, shows that the parallel 

breaks up into factors. The tangential equation of the parallel 
is in fact (a° + 8") y*={aaB+hk (a’+ *)’}. 

If we take for uw and v respectively the most general functions 

of the first and second degrees in a, 8, y, u’p*=v" denotes a 
curve of the fourth class having two double tangents, and 

which is therefore of the eighth order. But these functions may 

be so taken that the double tangents shall become stationary 

tangents, and that the curve may have another double or 
stationary tangent, and in this way we can form the equation 
of a curve of the third or fourth order whose parallels break 

up into factors. Of this kind is the reciprocal of a Cartesian, as 

will afterwards be shown. 

120. If we had been using trilinear instead of rectangular 

equations, it follows, from Conics, Art. 61, that the equation of a 
parallel to ax+Py+ yz, at a constant distance from it, is of 

the form 

ax+ By+yz+m(esinA + ysinB+ zsin C) /(S)=0, 

where S is 

a + B? +9°- 2By cos.A — 2ya cos B— 2a/8 cos C, 



PARALLEL CURVES AND NEGATIVE PEDALS. 105 

and we see that if in the tangential equation of a curve we 
write for a, 8, y, 

atmsinA /(S),8+msinB (8), y+msin Cy/(S), 

we shall have the tangential equation of a parallel curve. We 

saw, Conics, Art. 382, that S= 0 is the tangential equation of the 
points JJ; and jt is at once suggested, that if S=0 be the 
tangential equation of any two points, and ax+by+cz=0 

the line joining them, then considering the circular points at 

infinity as replaced by the two points in question, the envelope 
of ax+Py+yz2, and of ax+ Byt+yzt+(ax+ by +cz) /(S) are 
quasi-parallel curves. 

121. We called (Art. 116) the locus of the foot of the 
perpendicular on the tangent from a given pole or centre, the 

pedal of the given curve. Having found the pedal we may 

find its pedal again, &c., and so have a series of second, third, &c., 

pedals of the given curve. Or we may continue the series 

the other way, the curve of which the given curve is the pedal 
being the first negative pedal, and so on. The problem of 
finding the negative pedal is that of finding the envelope of a 
line drawn perpendicular to the radius vector through its 

extremity ; or, in other words, it is that of finding the envelope of 

ON + By = a+ Bp, 

where a, 8 satisfy the equation of the curve. We have just 

- seen that the problem of finding the parallel curve is that of 

finding the envelope of 

2an + 2By + kh? —2?- y’=a' + B’, 

subject to the same conditions; and accordingly Mr. Roberts 
has remarked that the two geometrical problems are both 
reducible to the same analytical problem, viz. that of finding 
an envelope of the form 

Aa + BB+ C=a' +p’, 

and that if we had the equation of the parallel curve we could 
deduce that of the negative pedal, by writing in it h*= 2+ 7’, 

and then writing 42, 4y for x and y. Ordinarily, indeed, the 

problem of finding the parallel curve is the more difficult of the 

two; but this method gives immediately the negative pedal of 

P 
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the right line or circle. For the parallel to a right line is a 
pair of equidistant parallel lines, and the parallel to a circle 
of radius a is two concentric circles of radii atk. In either of 
these cases, then, the equation of the parallel curve can be 

written down without calculation, and the negative pedal thence 
derived by the process just indicated. 

122. If for any curve there is taken on each radius vector 
OP from an arbitrary origin or centre of inversion a portion 
OP’ equal to the reciprocal of OP, the locus of P’ is said 

to be the inverse of the given curve. From this definition it 

is easily inferred that the pedal of a curve is the inverse of 
its polar reciprocal, and that the first negative pedal is the 

polar reciprocal of its inverse; the reciprocation being per- 

formed in regard to a circle described about the origin or centre 
of inversion as its centre. 

There is no difficulty in deducing, by reasoning similar to 

that used in other similar cases, the characteristics of the curve 

inverse to a given one, and hence those of the pedal and of the 
negative pedal respectively, and it is sufficient to give the 

results. We use f and g in the same sense as before to denote 

the number of times that the curve passes through a point J or 

J, or that it touches the line Z/; f’ and g' denote the reciprocal 

singularities, viz. the number of times the curve touches a line » 

OI or OJ, or that it passes through the origin; p and g denote 

the number of coincidences of tangents when the origin or when 

a point J or J is a multiple point [for example, we should have 
py =1, if the origin were a cusp], and p’, q' denote the reciprocal 

singularities; then for the inverse curve we have 

M=2m—f—g', N=n+2m—2(f+g')—-(f+9)+ (pt); 

F=2m~f- 2%, G=p, F=q, @=m—f, P=g, Q=f. 
Hence we must have for the pedal 

M=2n- f'—g,N=m+2%n—-2(g+f)-9F + f)tP +4, 
F=2n-29-f', G=p', f=, G=n—-f', P= 9, V=f, 

and for the negative pedal 

M=n+2m—2(f+g)-(f+g9)+pt+q N=2m-f-g, 
F=q,G=m—f, F=2m-f—27', G=p,P=g9,U=f. 
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£x, 1. To find the negative pedal of the parabola, the pole being at the focus.* 

Let the equation be y2=4 (mx+m?). We may then express any point on the 

curve by x + m = A*m, y = 2m, and the equation az + By = a? + B? becomes 

(A? — 1) w + 2QAy = (A? +1)? m. 

The invariants of this quartic in \ are 

S=3 (x +4m)*, T= (x + 4m)5 — 54m (a? + y?). 

The discriminant therefore $*— 277? becomes divisible by 2? + y? and gives the 

equation 
(x + 4m)? = 27m (x? + y?). 

This is equivalent to the polar equation ‘, cos }w = m®, which might have been other- 

wise obtained, since it immediately follows, from Art. 95, that if the equation of any 

curve can be expressed in the form p”™ = a™ cosmw, the equations of its pedal and 

negative pedal are of the same form, the new m being i ge and oom respectively, 
1 

it may be remarked that the equation of the tangent to a parallel to this curve is 

(A? — 1) & + 2Ay = (A? +1)? m+ (A? +1) K, 

the envelope of which is of the fifth order, the curves answering to the values + * 

being distinct. And so in general the parallels will be unicursal of curves, the 

equation of whose tangent is 

(A? — 1) @ + Wy= ¢ (A). 

If we take @ (A) = m)3 we get a curve of the third class and fourth order touched 

by the line at infinity and passing through the points J, J. 

2 

a? 
Writing as usual for the coordinates of any point a cos@ and b sing, we have to 

find the envelope of 

2 

Ex, 2, To find the negative pedal of = - a = 1, the pole being at the centre, 

ax cos + by sing = a? cos*p + 0? sin’ = 4 (a? + 4?) + 3 (a? — 6%) cos2¢. 

Hence, writing for the moment } (a? + 0?) = m, } (a? — 6?) =n, the envelope is (see 

Art. 85, Ex. 3). 

{3 (aa? + b?y?) — 4 (m? + 3n?)}3+- {9 (m—3n) a?a?+9(m+3n) b?y? — 8m (m*—9n?)}?= 0, 

For Professor Cayley’s solution of the same problem, see Geometry of Three Dimen- 

sions, (Art. 481). 

Ex. 3. To find the negative pedal of the ellipse, the pole being at the focus. 

The x measured from the focus is e+ a cos@ and the focal radius vector a + ¢ cos@. 

We have therefore to find the envelope of 

z{c+acos¢) + yb sing = (a+ ¢ cos ¢)?’, 

or of ce? cos2 + a (4c — 2x) cos — 2by sin p + (2a? + c? — 2cxr) = 0 

and the envelope is 

{8b? (x? + y?) — (2b? + cx)?}5 + 90? (a? — cx + 2c?) (x? + y”) — (2b? + cx)3}? = 0, 

which, when expanded, will plainly be divisible by x? + y? and will represent a curve 

of the fourth degree, having the lines x? + y? as stationary tangents, 

_ ™* Tt may easily be seen that this is the same problem as to find the caustic by 

reflexion, the rays being perpendicular to the axis. 
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CHAPTER IV. 

METRICAL PROPERTIES OF CURVES. 

123. In this chapter we shall give some of the more 
important of the metrical properties of curves. In the investi- 
gation of such properties Cartesian rectangular coordinates are 

most advantageously employed; then, as we saw in Art. 35, by 

substituting p cos@ and p sin@ for x and y, we obtain the lengths 
of the segments made by the curve on any line through the 

origin; and so on any line whatever, since by transformation 
of coordinates any point may be taken for origin. 

The theorem given (Conics, Art. 148) may be generalized as 
follows: If through any point O two chords be drawn, meeting 
a curve of the n™ degree in the points f,h,...R,, S8,...8,, then 

OE: OES oe will be constant, what- 

ever be the position of the point O, “provided that the sidelined of 
the lines OR, OS be constant.* 

And the enh is the same as that already given in the case 

of conic sections. From the polar equation of the curve, Art. 26, 
we see that the product of all the values of the radius vector on a 

line through the origin making an angle @ with the axis of « is 

A 
~ Pcos"6 + Q cos” 0 sind + &e.? 

and the same product for any other line is 

m A 
~ Pos"? + Q cos” 6, sind, + &e. ° 

The ratio is therefore 

P cos"@ + Q cos"’@ sin8 + &c. 
Pos", + Q cos” ’@ sind + &e. * 

the ratio of the products 

* This theorem was first given by Newton, in his Enuwmeratio Linearum Tertia 

Ordinis. 

lee 
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But we have seen (Conitcs, Art. 134) that, by a transformation to 
any parallel axes, the coefficients of the highest powers of the 

variables, and therefore this ratio, will be unaltered. 
We may (as at Conics, Art. 148) express the same theorem 

thus: Jf through two fixed points, O and o, any two parallel lines 

be drawn, then the ratio of the products Oh,.OR,.OR,...&c. 
2 or,.or,.0r,, &c. will be constant, whatever be the common direction 
of these lines. 

P cos" + &e. 
A' is the absolute term when o is made the origin; and the ratio 

of the products is A : A’, and independent of 6. We have seen 
(Conics, Art. 134) that the new absolute term will be the result of 

substituting the coordinates of 0 in the given equation. We see, 
therefore, that the result of such a substitution is always propor- 

tional to the product of the segments intercepted between o and 
the curve on a line whose direction is given (Conics, Art. 262). 

For the value of the second product is , where 

124. From the preceding theorem is deduced at once 
Carnot’s theorem, of which we have given a particular case 
(Conics, Art. 313). Let each of the sides of a polygon ABC, &e., 

meet a curve of the n™ degree in n real points. We shall 

denote by (B)' the continued product of the n segments made on 
the side BC between B and the curve; by '(B) the product of 

the segments made on the side BA. Then 

(A)' (BY (C)' (DY &e. ="(A) "(B) "(C) (WD) &e. 
For through any point draw radii vectores parallel to the sides 
of the polygon, and denote the continued product of the seg- 
ments on each of these lines by (a), (0), (c), &c., then, disregarding 
signs, 

(B) = (BY: she (6), 
(@) 2 (@)' 3: ): ), 
(D) : (DY: (c) : (d),- 

&e., 

and, compounding all these ratios, the truth of the theorem is 
evident. 
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125. Some ambiguity will be avoided by attention to the 
sign +. Considering the segments on the line AB, we have 

(A)’ the product of n segments measured from A to B; and 

‘(B) the product of m segments measured from B to A, and 
therefore according to the rule of signs (Conzcs, Art. 7), each term 
in the latter product is to be regarded as of an opposite sign 
from each term in the former, so that if we give to (A)’ 
the sign +, we must give to ‘(B) the sign (—)"; that is to 

say, + when z is even and — when it is odd. And if & be the 

number of sides of the polygon, then since each side of the 

equation of the last article consists of & factors such as (A)’, that 
equation must be written 

(A)’ (BY! (CY! &e. = (—)" (A) "(B) '(C) &e. 5 
that is to say, the right-hand side will have the sign + when 
either the degree of the curve or the number of sides of the 

polygon is even; but when both are odd, the sign — is to be 
used.* 

Ex. 1. Let a right line meet the sides of a triangle AB, BC, CA, in the points 
c,a,6. Then 

Ac, Ba. Cb =— Ab. Be. Ca (Conics, Art. 42), 

and the sign shows that, if it cut two sides internally, it must cut the third externally, 
The equation 

Ac,.Ba.Cb=+ Ab. Be,. Ca (Contes, Art. 48) 

will be fulfilled if the three lines Aa, Bb, Cc, meetin a point; and the line AB is 

cut harmonically in the points ¢ and ¢,. 

Ex, 2. Let each side of the triangle touch a conic in the points a, 4,¢, Carnot’s 

theorem gives us 

Ac, Ba®, Co? = + Ab*. Be?, Ca? ; 

and, therefore, Ac. Ba,Cb=+ Ab.Be.Ca. 

The lower sign cannot be used, since no line can meet a conic in three points: we 

learn then that if a conic be inscribed in a triangle, the lines joining each vertex to 

the opposite point of contact meet in a point, 

Ex. 3. Let a, 6, c be points of inflexion on a curve of the third degree, at which 

BC, CA, AB, are tangents; then by Carnot’s theorem, 

Ae’. Ba’, Cb3 = — Ab, Bc. Ca, 

the only real root of which is 

Ac. Ba. Ch = — Ab. Be. Ca. 

Hence, if a curve of the third degree have three real points of inflexion, they must lie 

on one right line. Hence, too, a curve of the third degree can have only three 

* See Pliicker’s System der Analytischen Geometric, p, 44. 

See 
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real points of inflexion; for this argument would show that ali the real points of 

inflexion must lie on a right line; and aright line can only meet the curve in three 

points. 

The same reasoning proves that if any curve of an odd degree n have three real 

points, at each of which the tangent meets the curve in n points, these three points 

must lie on one right line, 

Ex, 4, Let a curve of the fourth degree have three double tangents; we have 

Ac? Ac?. Ba®. Ba?. C8?. Cb? = Ab?. Ab,?. Be?. Be. Ca. Ca?, 

whence Ac. Ac,. Ba, Ba,. Cb. Cb, =+ Ab. Ab,.Be.Be,.Ca. Ca, ; 

but on account of the double sign we can only infer that “if a curve of the fourth 

degree have three double tangents, the conic through five of the points of contact 

will either pass through the sixth, or through the point which, with the sixth, divides 

harmonically the side of the triangle on which the sixth lies.” There are thus two 

distinct kinds of triads of double tangents, according as one or the other of these 

geometrical relations holds good, 

126. There are some particular cases for which Carnot’s 
theorem requires to be modified. First, if one of the angles 
(A) of the polygon were at infinity, that is to say, if two 

adjacent sides be parallel, then (4)’ ultimately = '(4), and we 

still have the equation 

(BY (C) &e. ='(B)'(C) &e. 

Secondly, if one of the angles (A) were on the curve; then 
one of the m terms vanishes in each of the products (A)' and '(A) ; 

AR snkh'A 

AR snRRA? “~ 
may substitute for the ratio of these two vanishing sides the 
ratio of the sines of the angles which the sides of the polygon at 
A' make with the tangent at A, and the theorem becomes 

(Ay (BY (0) &e. _ (A) (B)"(0) &e. 
sin a sin a’ 

but now, since the ratio of any two lines 

where (A)', '(A) have each but n— 1 factors, and where a, a’ are 
the angles which the sides on which (A)’, '(A) are measured 

make with the tangent at A. In this manner we can deduce 
that, “if any polygon be inscribed in a conic the continued 
product of the sines of the angles, which each side makes with 

the tangent at its right-hand extremity, is equal to the similar 
product of the sines of the angles made with the tangent at the 
other extremity.” 
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DIAMETERS. 

127. Ifthere be points in a right line, a point on the line, 

such that the algebraic sum of its distances from these points 

shall vanish, is called the centre of mean distances of the given 
points. Let the distance of the centre from any assumed point 

on the line be y, let that of the other points be y,, ¥,, y,, &c., 

then the distances of the centre from the given points are y—y,, 

y—y,, &c., and the condition given by the definition is 

= (y—y,) =9, or ny— S(y,)=05 

whence we learn that the distance of any assumed point from the 
centre is equal to the sum of the distances of the assumed point 
from the given points, divided by the number of these points; 

or is equal to the mean distance of the assumed point from the 

given points. ‘Thus, if there be only two given points, the 

centre of mean distances is the middle point of the line joining 

them, and the distance of any point on the line from the 

middle point is half the sum of its distances from the two 
given points. 

The well-known properties of the diameters of conics have 

been generalized by Newton into the following theorem, true for 

all algebraic curves: Jf on each of a system of parallel chords 
of a curve of the n™ degree there be taken the centre of mean 

distances of the n points where the chord meets the curve, the locus 

of this centre is a right line, which may be called the diameter 
corresponding to the given system of parallel chords. 

To prove this theorem, we adopt the same method of inves- 

tigation as in the case of conic sections (Conics, Art. 141). ‘The 

origin would be the centre of mean distances for a chord making 

an angle @ with the axis of «, if, when we transform to polar 

coordinates by substituting p cos 0, p sin @ (or in case of oblique 

axes, mp, np), for « and y, @ be such as to cause the coefficient 

of p"* to vanish. If we seek then the condition that any other 
point z'y' should be the centre of mean distances for a parallel 
chord, we must examine what relation should exist between 

a’, y', in order that when we transform the axes to this point 
the new coefficient of p””* should vanish for the same value 
of 6. But when the given equation U=0 is transformed to 
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parallel axes by substituting a+a’, y+y', for x and y, it 
becomes 

aa pau: Ee inl Per sy 8 es 
U+a' + G+4 (ee +2a'y daay *? Tyr) t &e-= 05 

only the three Re. terms can contain powers of the variables as 

high as the (n— 1)", and since these involve a'y’ only in the first 

degree, the required locus must be a right line. Its equation is, 

in fact, 

ie + ee —*+4u,,=9 da 7 dy ) 
where, in w,, w,_,, cos@ and sin@ (or, if the axes be oblique, m 

and 7) have sein substituted for 2 and y. 

128. Newton has also remarked, that if any chord cut the 
curve and its asymptotes, the same point will be the centre of 
mean distances for both, and that therefore the algebraic sum of 

the intercepts between the curve and its asymptotes=0. This 

is the extension of the well-known theorem (Conics, Art. 197). 
The truth of it follows at once from the equation of a diameter 
given m the last Article, and from what was proved (Art. 52) 

that the terms u,, u,_,, are the same in the equation of the curve 

and in that of its n asymptotes. 

129. We may in like manner seek the locus of a point such 

that the sum of the products in pairs of the intercepts, measured 
in a given direction between it and the curve, shall vanish. 
The origin would be such a point if the coefficient of p”” 
vanished for the given value of 0, and the locus is found, as in 

Art. 127, by examining what relation must exist between 2’ and 
zy’ in order that the coefficient of p"” in the transformed equa- 

tion should vanish. But since the terms of the (n—2)” degree 
in x and y involve no powers higher than the second of a’ and y/, 

the locus will be a conic section, which we shall call the 

diametral conic. 
Its equation is a seen to be 

du veda ~o! du, 2 d*u,, +e-5— daz +Y ae +a (eS EAM aay! 9 a)=% 

where, in u,_., 

Uns 

fog a and sin@ have been substituted for 
Q 
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wand y. The distance of any point from either point on the 

diametral conic being y, and from the curve y,, y,, &c., we have, 
by the definition, 

= (y—-4,) (y¥- 4.) = 0. 

The number of terms in this sum is the same as the number 

of combinations in pairs of n things, and is therefore = $n (n—1). 
This, therefore, will be the coefficient of y? when we multiply out 

each of these products and add them together. In the same 

case the coefficient of y will consist of 4n(n—1) terms, each of 

the form —(y,+y,), and since it must involve the nm quantities 

Ii Yo, KC., symmetrically, it must be - (n—1)=(y). Hence 

2 (y— 4%) (y—Yq) = 30 (n— 1) y'— (n—1) y2(y,) + 2 (Y,,) =O 
This quadratic gives the distances of any point from the diame- 

tral conic when we know its distances from the curve. $n (n—1) 

times the product of these two distances = 3 (y,y,), or the product 

of the distances from the diametral conic is equal to the mean 

product in pairs of the distances from the curve, since there 

are $n(n—1) such products. The sum of the distances from 

: : 2 ; ; 
the diametral conic = 2 =(y). The mean distance is then the 

same for both curves, since there are two such distances in 

the one case, and m in the other; and the two curves have 

the same diameter. 

130. There is no difficulty in seeing that a curve of the n™ 

degree may have other curvilinear diameters of any degree up 
to the (n—1). Thus the locus of a point such that the sum 

of the products in threes of its distances from the curve should 
vanish, is found by putting the coefficient of p”®* in the trans- 
formed equation=0; and since this coefficient involves no 
higher than the third powers of the variables, the locus will 

be of the third degree. We may see too, in like manner, that 

= (y—y,) (Y¥—Ya) (Y¥— Ya) = 3" (m — 1) (n—2) y | 
Pee 4 (n eee L) (n aes 2) y= (y,) ay (n oF 2) yz (YY) soe (Y,YYs)9 

and we can readily infer hence that the curve and its cubical 

diameter will have the same mean distance, mean product in 
pairs, and mean product in threes of the distances; so in like 

manner for diameters of higher dimensions. More light will 

8 
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be thrown on the subject of these curvilinear diameters by con- 

siderations which we shall explain presently. 

131. To the mention we have made of diameters we may 
add some notice of centres. If all the terms of the degree n—1 

were wanting in the equation, then the algebraic sum of all the 

radii vectores through the origin would vanish, and the origin 

might in one sense be called a centre. 

The name centre, however, is ordinarily only applied to the 
case where every value of the radius vector is accompanied by 

an equal and opposite one. In this case, if the equation be 
transformed to polar coordinates, it must be a function of p* 

only. Ifthe curve then be of an even degree, its equation in 

x and y, referred to the centre, can contain none of the odd 

powers of the variables, and must be of the form 

u,tu,+tu,+&e.=0. 

If the curve be of an odd degree, its polar equation must be 
reducible to a function of p” by dividing by p; and the x and y 
equation can contain none of the even powers of the variables, 

but must be of the form 

U,+u,+u,+&c.=0. 

This form shows that if a curve of an odd degree have a 

centre, that centre must be a point of inflexion. It is also 
evident that it is only in exceptional cases that a curve of any 
degree above the second will have a centre; since it is not 
generally possible, by transformation of coordinates, to remove 

so many terms from the equation as to bring it to either of 

the forms given above. 

_ POLES AND POLARS. 

132. We pass now to an important theorem, first given by 

Cotes in his Harmonia Mensurarum: If on each radius vector, 

through a fixed point O, there be taken a point R, such that 

eae U oe + pan &e 
On On * OR t Ott” 

then the locus of R will be a right line. 
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For, making O the origin, the equation which determines 

OLf,, &c., is of the form 

A 4B cos 04 Csind) 
p p 

+ (D cos’? + E cos @ sin 6+ F sin’@) = + &. = 0. 

owe _n __ (Bcos6+ Csin 8) 

Ok A ‘ 

or, returning to x and y coordinates, 

: Bu + Cy+nA=0. 

This is the equation found (Art. 60) for the polar line of the 
origin, and the property just proved is the extension of the 
well-known harmonic property of poles and polars of conic 

sections (see Conics, Art. 146). 

133. The preceding property may also be established with- 
out taking the point O as the origin, by a method corresponding 

to that used, Conics, Art. 92. We have seen (Art. 63) that 

given two points O, 2'y'z', and R, xyz, then the equation 

A= 0, or 

MO +A *WAU' + 4A" WA?U' + &e. = 0, 

determines the ratios RR,: OR,, &c., in which the line joining 

these two points is cut by the curve. It follows then from 

the theory of equations, that AU’=0 expresses the condition 

that the sum of the roots of the equation A=0 should vanish : 

that is to say, AU’ =0 is the locus of a point #, such that 

RR Ree 
OR OE 

But writing for RR, OR,- OR, &c., this equation is at once 
seen to be 

7 1 1 

G2 awe ont 
2 

134, It can be seen in like manner that the polar conic 
A’ U' = 0 is the locus of a point, such that 

RE, RSX. 5 1 1 Aw ae 
Ga GR) Bi era (or A OR) (on OR) an 

and similarly for polar curves of higher order. ‘The polar curve 

peor 
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of the % order possesses the properties (if OR denote a radius 
vector to the curve, and Or to the polar curve) 

1 1 1 1 

a” OR oR OF’ 
LP sig Re as ee 

n(n—1)> OR,.OR, k(k—1)~ Or,.Or,’ 
1.9.3 Ph $9.3 1 

n(n—1)(n—2) . OR,. OR,. OR, kik—1)(k—2) Of OF Oe. 

135. If the point O be at infinity, then the distances OF, 
OR,, &c., may be regarded as having to each other the ratio of 

LR, R, 

OR, , OR, , 

&c., may be considered as equal. ‘The property then of the 

equality, and the denominators in all the fractions 

polar line = ——! pias = 0, reduces, when OQ is at infinity, to 2 (2R,) = 
OR, 

or the sum vanishes of the intercepts between the polar and the 

curve on the parallel chords which meet at O. ‘Thus then the 

polar line of a point at an infinite distance is the diameter of the 
system of parallel chords which are directed to that infinitely 

distant potnt. 

OR, OR 
reduces when O is infinitely distant to = (RR,.RR,) =0, or 
=(OR-OR,) (OR- OR,) =0, the equation (Art. 129) shih 
determines the diametral conic. And so in general, the curvilinear 

diameter of any order ws identical with the polar curve of the 
same order of the infinitely distant point on the system of parallel 
chords to which the given diametral curve corresponds. 

So again for the polar conic. The equation = Ge rae ‘= 0 

136. Mac Laurin has given a theorem, which is the extension 

of Newton’s theorem (Art. 128): “Jf through any point O a 
line be drawn meeting the curve inn points, and at these points 

tangents be drawn, and if any other line through O cut the curve 

nh, f,, a and the system of n tangents in r,, 7, de., then 

1 

2 OR? oe 
It is evident that two points determine the polar line; that, 

therefore, if two lines through O meet two curves in the same 



118 POLES AND POLARS. 

points, #,, L,, &e., S, S,, Ke. the polar of O, with regard 
to both curves, must be the same, since two points of it, 

f and S, are the same for both. This will be equally true 

if the two lines Of, OS coincide, that is to say: “If two 

curves of the n‘ degree touch each other at n points in a right 

line, then the polar of any point on that right line will be the 

same for both curves; and therefore if any radius vector through 

such a point meet both curves, we must have = ee > = # 
OR Or 

137. We know that the centre of a conic may be regarded 
as the pole of the line at infinity with respect to the curve. 

With respect to curves of higher order, however, every right 

line has (n—1)’ poles (Art. 61), and there is therefore no 

unique point for a curve of higher order answering to the centre 

of a conic section. But it is different if we consider curves of 
higher class. The preceding investigations are evidently appli- 

cable also to tangential coordinates; and thus every right line 

has a pole, a polar curve of the second, third, &c. class, and, 

finally, a polar curve of the (n—1)™ class, touched by the n 

tangents at the points where the right line meets the curve. 

And if we thus by tangential coordinates seek the pole of the 
line at infinity we find a unique point. 

Let us examine what metrical property is possessed by the 

pole of a line expressed in tangential coordinates, and, in par- 

ticular, by the pole of the line at infinity. We take the system 

of Art. 19, in which the coordinates of a line are proportional 

to the perpendiculars let fall on it from three fixed points; and 

then it may be seen, without difficulty, that 7: m denotes the 

ratio of the sines of the angles, into which the angle between 

two lines aBy, a’B'y' is divided by the line la + ma’, (8 + mf’, 

ly+my'. The equation then which answers to A = 0 determines 
the ratio of the sines of the parts into which the angle 

between any two lines is divided by each of the tangents which 
can be drawn through their intersection to a curve of the n 

class. And, as in Art. 133, the pole & of any line possesses the 

property = (a ZP6) = 0, where Pisa variable point on the 

given line; &,, 2,, &c., the points of contact of tangents from 
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the point P, O any fixed point on the given line. Thus for a 
eurve of the second class the relation is 

sn RPR, , sin kPR, 

sin PO sin k,PO 

that is to say, “if from any point JP, on a fixed line OP, we 
draw tangents PR, PR,, to a conic, and draw PF so that 

{P. OR, RR,} shall be a harmonic pencil, then OF passes through 
a fixed point.” This is the fundamental definition of pole and 

polar with regard to aconic considered as a curve of the second 
class. 

We may write the relation 

(Ps) =0 in the form = (eo) =0, 

where J, is the foot of the perpendicular from £&, on the line 

RP, and O, the foot of the perpendicular from the same point 

on the line OP. Now let the line OP go off to infinity, then 

all the denominators in this latter sum tend to equality, and we 

have simply > (M_R,) =0; or the sum vanishes of the perpen- 

diculars let fall from the points of contact of any system of 

parallel tangents on a parallel line through &. In other words 

then, the centre of mean distances of the points of contact of any 

system of parallel tangents to a given curve is a fixed point, which 

may be regarded asa centre of the curve. ‘Thus in a conic the 

middle point of the line joining the points of contact of parallel 

tangents is a fixed point; in a curve of the third class, the 
centre of gravity of the triangle formed by them, &c. This, 
theorem is due to M. Chasles ( Quetelet, v1. 8). 

= 0, 

FOCI, 

138. It was shown (Conics, p. 228) that the foci of conics 

possess the property that the lines joining them to the circular 

points at infinity touch the curve. Hence we are led to the 

following definition of foci in general: A point F' is said to 

be a focus of a curve, if the lines /'/, FJ both touch the curve, 
or, as we may say, when it is the intersection of an J-tangent 
with a J-tangent.* A curve of the n“ class has in general n’ 

* This conception is Pliicker’s, Credle, vol. x. p, 84, 
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foci, namely the points of intersection of the m tangents with 
the n J-tangents. But the curve being real, m and only x of 

these foci are real; in fact the equation of one of the J-tangents 

being 4+7B=0 (where A and Bare linear functions of the 

coordinates), that of one of the J-tangents will be A —-7B=0, and 
these intersect in the real point 4 =0, B= 0, and there is not on 

either of these tangents any other real point. ‘Thus a conic 

(n =2) has 4 foci, two of them real. 
In what precedes it is assumed that the points J, J have no 

special position with respect to the curve. Let us now suppose 

that the line JJ is an ordinary, or singular, tangent at one or 

more points A, B, &c., which for the present we suppose to be 
distinct from the points J, J; say that JJ reckons g times 

among the tangents from J or J to the curve; then the 

J-tangents are made up of the line JJ counting g times, and 

of n—g other tangents; and similarly for the J-tangents. 
Then the only foci which do not lie at infinity evidently consist 

of the intersections of the n—g J-tangents with the n—g 

J-tangents, and there are (n —g)’ finite foci, of which, as before, 

only n—g arereal. The total number of n’ foci is made up of 
these (n—g)* foci, together with the point J counting g (n—g) 

times (namely, as the intersection of each of the n—g J-tangents 

with each of the g J-tangents which coincide with L/) ; similarly, 
of the point J counting g (n—g) times, and lastly of the g’ 
intersections of the g J-tangents coincident with L/ with the 

g J-tangents coincident with LJ. In this last case any J-tangent 

IA must be regarded as intersecting the corresponding J-tangent 

JA at the point of contact A, but its intersection with any 

other J tangent JB will be indeterminate. ‘Thus, if the line at 
infinity touch the curve in g real points, there will still be n 

real foci, viz. x —g finite foci, and the g points of contact of LJ 
with the curve.* For instance, the parabola (n=2, g=1) has 

one finite focus, the other real focus being infinitely distant in 
the direction of the axis. 

Again, let the point J be on the curve; then assuming the 

curve to be real, the point J is also on the curve, and if Z 

* Prof. Cayley thinks that the preferable view is that the only foci are the (n — g)z 

foci, and consequently that the only real foci are the (n — g) foci, 
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be a singular point, J will have the same kind of singularity. 
Confining our attention for the moment to the case where both 

_are ordinary points, the n —g J-tangents consist of the tangent 
at J counted twice, together with n—g—2 other tangents; and 
similarly for the J-tangents. Then the (n—g)’ foci are made 

up as follows: the real intersection of the tangents at Z and J 
counting as four; the n—g—2 imaginary intersections of the 

tangent at £ with the n—g—2 J-tangents, each counting for 

two; the n—g-— 2 imaginary intersections of the tangent at J 
with the n—g-— 2 J-tangents, each counting for two; and lastly, 
the (n —g — 2)’ intersections of the two sets of n—g—2 tangents. 

Of these last, as before, n—g—2 and only n-g—2 are real, 
and the intersection of the tangents at J and J takes the place of 

two of the n—g real foci. Paying attention then only to real 
foci, this point is commonly called a double focus; and we find 

it convenient to use this language, though, as we have just seen, 
if we considered imaginary as well as real foci, it ought to 

be called a quadruple focus. Thus, in the case of the circle, 
the only focus is the centre, which must be regarded as a 
quadruple focus, if we consider that it takes the place of the four 
foci which conics in general possess, but which may be spoken 

of as a double focus if we only pay attention to the two real foci. 

Similarly, if each of the points J, J is an f-tuple point on the 
curve, it is seen in the same way that there are f” foci, which 

each count for four and of which f are real; 2f(n—g—2f) 
imaginary foci which each count as two, and (n—g—2f)’ single 

foci of which n—g- 2f are real. Considering then both real 
and imaginary foci, we should say that there are f’ quadruple, 
2f(n—g-—2f) double, and (n—g-2f)? single foci; but con- 

sidering real foci only, we may say that there are f double, 
n—g— 2f single foci, and g foci at infinity. 

If f and J be each of them an inflexion, or each a cusp, then 

the tangent at J or J counts three times among the J or J-tan- 
gents; ard there are from each point n—g—3 other tangents. 
The (n—g)’ foci are then as before seen to be made up of one 

which counts as nine, of (n—g-—3)+(n-—g-— 8) which each 
count as three, and (n—g-—3)* single foci. Of these last 
n—g-—38 are real, and the only other real focus is the intersec- 
tion of the tangents at J and J, which is commonly called a 

R 
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triple focus as counting for three among the real foci, though 
if we took into account imaginary as well as real foci, it ought 

to be regarded as a 9-tuple focus. There is no difficulty in 
extending the theory to the cases where J and J are multiple | 
points of higher order at which several tangents coincide, or 

where they are points at which the tangent has contact with the 
curve of a higher order than the second, or where they are 

ordinary or singular points having LJ for their common tangent. 

139. Given any two real foci A, A’ of a curve, the lines 
Al, AJ; A'I, A’J, meet in two imaginary points B, B’ which 

are also foci of the curve; and the relation between the two 
pairs of points is, that the lines 4A’, Bb" bisect each other at 
right angles in a point O, such that OA (= OA’) is equal to 
iOB (=iOB'). The points A, A’ and B, Bb’ have been termed 
 anti-points.” The relation is one of frequent occurrence in 
plane geometry; thus a conic has two pairs of foci, which 

are anti-points of each other; any circle through A, A’ cuts 
at right angles any circle through B, B', &. It is to be added, 

that being given the n real foci, we form with these 4n (m—1) 
pairs, each giving rise to a pair of anti-points, and thus obtain 

the remaining n*— n foci. 

140. The coordinates of the foci of a curve are obtained by 
forming the equation of the tangents which can be drawn from 

the point J to the curve. This will be of the form P+7Q=0, 
the corresponding equation for the point J will be P—7Q=0, 
and the intersection of the two systems of tangents are given by 
the equations P=0, Q=0. Thus denoting the first differential 
coefficients with respect to « and y by U,, U,; the second by 

U5 U4, U,.) &e.; then, by Art. 78, the equation of the system 
of tangents from 1, 2,0 is got by forming the discriminant of 

MU+0"* (U4 7U,) 4+ $n"? (U,, + 2¢U,,— U,,) +&e.=0. Thus, 
if the curve be a conic, the discriminant is 

{U?—UY—2U(U,, —U,)} + 2¢(U,U, — 200), 
and the foci are got by equating the real and imaginary parts 
separately to zero. By combining these equations, we get the 
equation of the two right lines, the axes, on which the foci 

lie, viz. 
U,, (U2 -0;3) —(U,, - U,,) 0,0, =0. 
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The very same equations determine the foci of a cubic passing 
through the points J, J; of a quartic having these points for 
double points, &c.; for in any of these cases it is easy to see that 
all the terms but those written above vanish of the equation 
whose discriminant is to be found. 

141. We canvalso determine the foci, as at Conics, Art. 258, 
Ex., by expressing the condition that e—a'+7(y—y') should touch 
the curve; or, in other words, by substituting in the tangential 
equation, 1, 7, — (#’+ dy’) for a, 8, y. The real and imaginary 

parts of the equation then separately equated to zero determine 

the coordinates of the foci. It is not difficult to find a real 

geometric interpretation of each of these equations. Let the 
condition that «—a'+ p(y—y’) should touch the curve be written 

ap” + bp" * + cp"* + &e. =0, 

where a, 6, &c. are functions of wx’, y'; then by the theory of 

equations Hee = &c. are the sum, sum of products in pairs, 

&e. of the tangents of the angles, which the tangents to the 
curve through wy’ make with the axis of a If now we write 
p=t, and equate to zero the real and imaginary parts of the 
equation, we get the two equations 

a—c+e—&.=0, b-—d+f—&.=0; 

the second of which, by the well-known formula for the tangent 

of the sum of several angles, expresses that the sum of the 

angles made with the axis of a by the tangents through ay’ 
is either zero or is some multiple of 7; and the first of 
the equations expresses that the sum of the angles is some odd 

multiple of 47. Hence the locus of a point such that the sum 
of the angles made with a fixed line by the tangents through it 
to a curve of the n™ class shall be given is a curve of the 
n” degree, whose equation, the fixed line being taken for axis 
of x, is easily seen to be 

(a—c+e-&c.) tand=b-d+f- &e. 

Whatever be the fixed line jor the angle, the locus will pass 
through the foci of the curve. This may appear paradoxical, 
since it follows hence, that the sum of the angles made with 
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any line by the tangents from a focus may be equal to any 
given quantity. The reason of this is that the tangents of two 

of these angles are +7, and the tangent of their difference assumes 

the form : , and may be any assignable quantity. In fact, if 

tand=7, ¢ may be regarded as an infinite angle, since it pos- 
sesses the properties sn@d=cosP=co and tan(¢?+a)=tandg, 

and the difference of two infinites is indeterminate. 

We have seen (Art. 110) that a tangent through one of the 
points J, J coincides with the normal; and hence every focus of 

a curve is also a focus of its involutes and evolute. 

142. An important property of the perpendiculars let fall 
from the foci on any tangent is at once derived from the 

equation expressed in that system of line-coordinates (Art. 19 
and Conics, p. 364) in which the variables are the perpendi- 

culars let fall from three fixed points on any line. Let a, 8, y, 5, 

&c. be the n foci: let ww’ denote the points J, J; then, since 
the lines aw, aw’, &e. are to be tangents to the curve, the 

tangential equation must be of the form afyé kc. = we'd, 

where ¢ is a function of the order n—2 in the line-coordinates. 

For curves of the second class, this at once gives the property 
that the product of the perpendiculars from the two foci on any 

tangent 1s constant, since it was proved (Conics, p. 363) that 

- for aw’ we may substitute a constant. 
Similarly, replacing ww’ by a constant, the general equation 

of curves of the third class is a8y =k6d, where a, 8, y denote the 

three foci, and 8 a certain fourth point: viz., we may from 

each focus draw to the curve (besides the two tangents through 

I, J respectively) a single tangent; and the form of the 

equation shows that the three tangents from the points a, 8, ¥ 

respectively mect in a point 6.* We learn, then, that the 

product of the three focal perpendiculars on any tangent to 

a curve of the third class is in a constant ratio to the per- 

pendicular on the same tangent from the point 6. If the 

curve pass through the points J, J, there is a double focus, 

* The veciprocal theorem for curves of the third order cut by any two lines 

is given post, Art. 148, 
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and the equation takes the form 2°8 =ké, the interpretation of 
which is obvious. Ifa focus A is at infinity, we can see how 

the formula is to be modified, by first using for the coordinate « 
the perpendicular distance of A from any tangent divided by 
AB; and then, when A goes to infinity in the direction AB, 

it is easy to see that a will be cos@ where @ is the angle made 
by AB with the direction of the perpendiculars on the tangent. 
Thus the formula for a conic, 48 =’, becomes in the case of 

the parabola where A passes to infinity, 8 cos@=h, showing 

that the locus of the foot of the perpendicular from the focus 8 
in a tangent is aright line. In like manner for a curve of the 

third class the formula a8y=45 becomes Py cosO6=k8, which 
may be written By=46', if we understand by 3’ the intercept 
made by the variable tangent on a line drawn through D 

parallel to AB. 
For curves of the fourth class the equation is a@yi=k’h 

where ¢ is the conic section which, as the equation shows, is 
touched by the eight focal tangents which do not pass through 

I,J. But if the foci of this conic be ¢, &, the equation may be 
put into the form a8y5=4%ef+l', the geometrical interpreta- 
tion of which is obvious. This equation includes the form 

aB8yd5=l* or =@*w”, which represents a curve on which the 
foci a, 8, y, 5 are double foci; the form a8 =o*w” in which 

I, J are points of inflexion, &c. 

And so in general the tangential equation of a curve of the 
n class gives a relation of the first degree connecting the 
product of the x focal perpendiculars, of n—2 other perpen- 
diculars, of » —4 other perpendiculars, &c., and so on until we 
come either to a single perpendicular or a constant term. 

143. From relations connecting the focal perpendiculars on 

the tangent can be deduced relations connecting the angles 
between the focal radii and the tangent. I*or if AP be the 
perpendicular a on the tangent at any point £& of the curve, 
and if db be the angle between two consecutive tangents, 
we have da=RPdd. Similarly d8=hP'dd, &e. So that 
if we differentiate the relation connecting the perpendi- 
culars, we may substitute for each da, HP the corresponding 

intercept on the tangent between the foot of the focal per- 
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pendicular and the point of contact. Thus from afy=k'5 

we deduce i ae a 

By + 2B Rs > si a 0, 

Be TS tae 
AP BP CP" DP 

or cot 8 + cotd’ + cot 0” — cot 0” =0, 

where 0 is ARP, the angle of inclination of the tangent to the 

focal radius vector AL, &c. 

whence 

144. The example of conics would lead us to expect to find 
simple relations connecting the distances. of any point on the 
curve from the foci. There does not appear to be any general 
theory of such relations, but we can without difficulty find 
particular curves for which they exist, for we have only to 

write down any relation connecting the distances of a variable 
point from fixed points, and find the locus for which it is 
satisfied. Hach distance, if expressed in terms of the coor- 
dinates, involves a square root; and if, as will commonly 

happen, the equation when cleared of radicals is of the form 

up =wv", the two imaginary lines denoted by p’=0 are tan. 

gents to the curve, and the fixed point / is a focus. In 
this way we might study the relations p+ mp'=d, for which 
the locus is an ellipse or hyperbola when m=+1, a circle 
when d=0, and in other cases a Cartesian: lo+mp'+ np" =0 
for which the locus is in general a quartic having the points LJ 

for double points, or, as we may say, a bicircular quartic; but 
when /imin=0, the curve is a cubic passing through the 

points JJ, or, as we may say, a circular cubic: pp'=d’, for which 

the locus is a Cassinian (see Art. 55, Ex. 3); or, more generally, 

ap’ + bpp'+cp”=d"*, which is in general a quartic, but is a 
cubic if a+b+c=0, that is to say, if the left-hand side of the 
equation is divisible by pip’, &c. We postpone the further 

discussion of this subject until we come to treat of the curves 
referred to. 

From a relation connecting the focal distances we can infer 
a relation connecting the angles which the focal radii make 
with the tangent; for it is proved, as in Art. 95, that each 

dp =cos@ds, where @ is the angle between the focal radius and 
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the tangent. Thus from p+ mp'=d we infer cos6+m cos6'=0, 

&c. From the value given in the last article for da, &c. we 
may infer Rda=pdp, &c., where # is the radius of curvature. 

Thus, for example, if we are given that la+ m@+&c. is con- 
stant, we can infer that /p’ + mp” + &c. is constant. 

145. Denoting by N the number of conditions (Art. 27) 
necessary to determine a curve of the n™ order, then if we 

are given that such a curve is circular, that is to say, that it 

passes through the points J, J; and if we are given N—3 other 
points on the curve, the locus of the double focus (or inter- 

section of the tangents at J, J) is a circle. For since but one 

curve of the n™ order can be described to pass though N 
points, if in addition to the above conditions we are given 
a consecutive point at J, that is to say, if we are given TJ 
the tangent at J, the curve will be completely determined, 
and therefore FJ the tangent at J is determined. The point 
f is then the intersection of corresponding lines of two homo- 
graphic pencils (Conics, Art. 831), that is to say, two pencils 

such that to any line of one answers one and only one line of 
the other. The locus of / is therefore a conic passing through 

the vertices of the pencils J, J, that is to say, it is a circle, 
This conic breaks up into the line JJ and another line, when to 

the line L/ of one pencil answers the line JZ of the other. This 
will be the case in the present example when z=2, since lJ 
cannot be a tangent to a conic passing through the points J, J, 

unless the conic break up into two right lines, and the theorem 
then is that for the circles which pass through two fixed points, 
the locus of the centres is a line; but when z is greater than 2, 
the locus will in general be a circle. 

146. In like manner if we are given N—1 tangents to a 
curve of the n™ class, the curve is completely determined if one 
more tangent FZ be given. The reasoning of the last article 
will apply, and the locus of the focus will be a circle, if the con- 
ditions are such that when the curve is determined, only one 
tangent can be drawn to it from the point J. ‘This will be the 
case, if among the given conditions is, that the line L/ is a 
tangent of the multiplicity n — 1, since then but one more tangent 
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can be drawn to the curve from any point on that line. We 
have seen, Art. 41, that to be given that a point is a multiple point 
of the order 4, is the same as if $£(k+1) points were given 

Similarly to be given that JJ is an (n—1)-tuple tangent, is 
equivalent to being given $n(n—1) tangents. Observing then 

that N—4n(n—1)=2n, we infer that if we are given 2n—1 

tangents of a curve of the nz" class, and also that the line at 
infinity is an (n—1)-tuple tangent, the locus of the focus (in 
this case there being but one focus) is a circle. Thus being 

given three tangents to a parabola, the locus of the focus 
is a circle. Again, the locus of the focus is a circle if we 
are given five tangents to a curve of the third class, among 

whose tangents the line at infinity counts for two. A particular 
curve of this system is the complex made up of the point at 
infinity on any of the five tangents, and the parabola touching 

the other four; the focus of the parabola being the focus of the 
complex. Hence we have Miquel’s theorem (Conics, Art. 268, 

Note) that the foei of the five parabolas which touch any four 
of five given lines lie on a circle.* 

* This proof of Miquel’s theorem is Mr, Clifford’s, for whose other inferences from 

the same principle, see Messenger of Mathematics, Vol, V., p. 137. 

Lanes 
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CHAPTER V. 

CURVES OF THE THIRD ORDER. 

147. Ir has been proved (Art. 42) that a curve of the third 
order, or, as we shall for shortness call it, a cubic, may have one 
double point, but cannot have any other multiple point. Hence 

is suggested the fundamental division of cubics into non-singular, 

having no double point; nodal, having a double point at which 

the tangents are distinct, and cuspidal, having a double point 

at which the tangents coincide. Pliicker’s numbers (Art. 82) 
for the three cases respectively are: 

mi 8 @imr ie 

50.0 Que Os 
eae Ge a OF Ss 

Soe ROS OE 

It thus appears that the curves are of the sixth, fourth, and 
third class respectively, or are such that six, four, or three 

tangents respectively can be drawn to the curve from an 

arbitrary point. If the point be on the curve, the tangent at 
the point counts for two among these tangents (Art. 79), and 

the number of tangents distinct from the tangent at the point 
is four, two, or one. If the point be a point of inflexion, the 
stationary tangent counts for three, and the number of other 

tangents which can be drawn through the point of inflexion 

is further reduced by one. 
Nodal cubics may obviously be subdivided (Art. 38) into 

crunodal and acnodal, according as the tangents at the double 
point are real or imaginary. We shall hereafter see that there 

is a parallel subdivision of non-singular ecubics. But for the 
present we postpone the further discussion of the classification 

of cubics, as the reader will be able to follow it with more 
intelligence when he has first been put in possession of some of 

the general properties of these curves. We likewise postpone 

8 
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the discussion of the general equation and the examination 

of its invariants, and we commence by applying to the case 
of cubics theorems we have already obtained for curves of any 
degree, beginning with the theorems on the intersection of 
curves established in the first Section of Chapter II. 

SECT. I.—INTERSECTION OF A GIVEN CUBIC WITH OTHER CURVES. 

148. It has been proved (Art. 29) that all cubics which pass 

through eight fixed points on a given cubic also pass through 
a ninth fixed point on the curve. This is a fundamental 
theorem leading to the greater part of the properties of cubic 
curves. In particular we infer that if two right lines whose 
equations are Ad=0, B=0, meet a cubic in points a, a’, a’, 

b, b', b" respectively, and if the lines ad, a’d', ab” (whose 
equations we write D=0, H=0, #=0), meet the cubic in 

points c, c’, c’, then the line cc'(C=0) joining two of those 
points will pass through the third. For the lines D, £, F 

make up a cubic passing through the nine points; the lines 
A, B, C make up a cubic passing through eight of these points, 
therefore it will pass through the ninth c”, and since this point 

cannot lie on either of the lines A, B which already meet the 

~ curve each in three points, it must lie on C. Since the given cubic 
passes through the intersection of the cubics ABC =0, DEF=0, 
its equation must be capable of being written in the form 
DEF-kABC=0. 

149. Let us suppose that the lines A, B coincide, then we 

deduce as a particular case of the preceding theorem, that if a 
right line, 4 =0, meet the curve in three points a, a’, a”, the 
tangents at these points, D=0, H=0, /=0, meet the curve in 
points c, c’, c’ respectively, which he on a right line C=0, 

and the equation of the curve may in that case be written 

DEF-—kA’C=0. The point c, in which the tangent at any 
point a meets the curve again is called the tangential of the point 

a; and the line C on which le the tangentials of the three 
points a is called the satellite of the line A. We shall hereafter 
show how when the equation of A is given, aw +Py+yz=0, 
the equation of C can be formed. The line A will have a real 

satellite, even though instead of meeting the curve in three real 
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points it meets it in one real and two imaginary points. The 
equations of the tangents at the imaginary points will be of the 
form P+7Q=0; their product will be real; and the equation of 
the curve can be written in the form D (P?+ Q’)=kA’C. 

Two cases of the theorem of this article deserve to be 
noticed. First, let the line A be at infinity, then the tangents 
D, E, F at the points where it meets the curve are the three 
asymptotes; each asymptote meets the curve in one finite point, 
and we learn that these three points lie on a right line C, 
the satellite of the line at infinity. In this case the equation of 
the curve is reducible to the form DEF =kC, and we have the 
theorem that the product of the perpendiculars from any point 
of the curve on the three asymptotes is in a constant ratio 

to the perpendicular from the same point on the line C. 

Secondly, let the points a, a be points of inflexion; then 
evidently the tangentials of these points coincide with the 
points themselves; the satellite line C therefore coincides with 
A, and consequently the third point @” in which it meets the 
curve is also a point of inflexion (see Art. 125, Ex. 3). The equa- 

tion of the curve is thus reducible to the form DH/F'= kA’, where 
A=0 is the equation of the line through the three inflexions, 

and D=0, H=0, #=0 are the equations of the tangents at 
these three points respectively. 

150. The theorem of Art. 149 may be otherwise stated, 
starting with the line C instead of with A; viz. given three 
collinear points c, c’, c’ of a cubic, the line joining a the point 

of contact of any of the tangents from c, to a’ the point of 
contact of any of the tangents from ec’ will pass through the 

point of contact of one of the tangents from c’. Only one 
tangent can be drawn aé a point of a curve, and therefore to 
any position of A corresponds but one position of C; but in 

the case of a non-singular cubic four tangents can be drawn 

from any point on the curve, and therefore to any position of 

C correspond sixteen positions of A. The twelve points of 
contact lie on the sixteen lines A, viz. each line A contains 

three points of contact, and through each point of contact there 
pass four lines A. 

Let us consider more particularly the case where C touches 
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the curve, and let us suppose the points c, c’ to coincide. 
Then we see that the line joining a,”, one of the points of 
contact of tangents drawn from c’, to a, one of the points 
of contact of tangents from c, must pass through one of the 
other points of contact from ¢, say a, In like manner, the line 
joining a,"a, passes through a, We have then the following 

theorem: The four points a,a,a,a, which are the points of 

contact of tangents from any point c of the curve are the vertices 

of a quadrangle, the three centres of which are also points on 

the curve, and are such that the tangents at these points and 
the tangent at c all meet the curve in the same point. 

151. Returning to the case where C does not touch the 
curve, we have the tangents from c touching at the points 

Gy Ay AG A, and the tangents from c’ touching at the points 
a, a,,4,,4,. Attending only to two points, say a,, a, of the 

first tetrad, it appears that separating the points of the second 
tetrad into pairs in a definite manner, say these are a,', a, and 
a, a, then combining the pair a,, a, jirst with the pair a,', a,,, 

the lines a,a,', a,a, meet in a point on the curve, and also the 
i417 

lines a,a,', 4,a,, meet in a point on the curve; and secondly with 
the pair a,'a,', the lines a,a,', a,a, meet in a point on the curve, 
and also the lines a,a,', a,a, meet in a point on the curve: viz. 

the four new points are the points of contact of the tangents 

from c’ to the curve. Any two points such that the tangents 

at these points respectively meet on the curve may be said to be 
“ corresponding points ;”’ thus any two of the points a, a,, a@,, a, 

are corresponding points; and so any two of the points a,', a,’ 5 

a,, a, are corresponding points. But starting with the two 

points a,, a,, the points a,’, a,’ (as also the points a,', a,’) may be 

said to be corresponding points of the same kind with a,, a,: viz. 
the property is that, given two pairs of the same kind, if w 

form a quadrilateral by joining each point of the one pair with 
each point of the other pair, the two new vertices of the quadri- 

lateral are points on the curve (they are in fact corresponding 
points of the same kind with the original two pairs). It is 
obvious that there are three kinds of corresponding points, 
viz. those of the kind aa, or a,a,, the kind a,a, or a,a,, 

and the kind a,a, or a,a, And, moreover, starting with the 
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pair a,a,, to obtain the whole system of corresponding points of 
the same kind, we have only to take on the curve a variable 
point K, and joining it with the two points a,, a, respectively, 

these lines again meet the curve in a pair of corresponding 
points of the kind a,a,. It may be mentioned that the envelope 
of the line joining two corresponding points of a given kind is 

a curve of the third class. The theory is, for the most part, 

due to Maclaurin (see the “ De Linearum Geometricarum Pro- 

prietatibus Generalibus Tractatus,” published with the 5th edition 
of his Algebra), and it may appropriately be called Maclaurin’s 
Theory of corresponding points on a cubic curve. 

152. In further consideration of the case where C does not 

touch the curve, let D,, L,, #, be tangents through the points 

c, ¢, c’ respectively, and we have seen that the equation of the 
curve may be written in the form DL, F\—A,*C=0. Let D,, L, 

be another pair of tangents through c¢, c’, such that their 

chord of contact passes through the point of contact of F, 
and fhe equation of the curve may also be written in the 
form DHF —AC=0. Hence we can deduce an identity 

(DE, - DE.) F,=(A-A,’)C. The right-hand side of the 

equation denotes three right lines, therefore the left-hand side 

must denote the same three lines. One of the factors therefore 

of D,L,—D,E, must be CG, which passes through the points 
DD, LE, The other factor which joins the points DZ, 

DE, must be A,+A,, F, being A,+A,. We see, then, that 
the latter two lines and the two chords A,, A, form a harmonic 
pencil, whose vertex is the point of contact of /. We shall 
afterwards apply this theorem to the case where the points ¢, ¢ 
are the imaginary points at infinity J, J; the points D.Z,, DE, 

are then foci, and /, is a tangent parallel to the single real 
asymptote of the curve. 

If the points ¢, c’ coincide, the line joining c to the point 
of contact of F', F, itself, and the two chords A,, A, form a 
harmonic pencil. 

153. Hence can be deduced another theorem of Maclaurin’s. 
Any line drawn through a point A on a cubic is cut harmonically 

in the two points @, y, where it meets the cubic again, and the 
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‘two points 8, 8’, where it meets a pair of chords joining the 
points of contact of tangents from A. Let the line meet the 

tangent C in the point e, then, since it meets A, and B, at A, 
by Art. 136, 

1 1 1 2 1 

54° 38 * By BAT 
1 1 L 1 
3B *e 54 a 5A + Tin 

But, by the last Article, 58’ is a harmonic mean between 64 
and de, therefore also between 68 and dy. Q.E.D. 

When the curve has a double point, only two tangents can 
be drawn to the curve; but the theorem of.this Article will be 

_ still true, if for the chord D’ we substitute the line joining the 

double point to the point where the ehord D meets the curve 
again. 

or 

154. We add one more application of the theorem, that 
all cubics which pass through eight fixed points on a cubic 
pass also through a ninth fixed point. Jf any conic be described 

through four fixed points on a cubic, the chord joining the two 

remaining intersections of the conic with the cubic will pass 

through a fixed point on the cubic. Consider any conic through 
the four points («) and meeting the curve in two other points 

(8), and a second conic through the points (a) and two other 

points (8’), then the conic through a, 8 and the right line 

joining the two points 6’ make up a cubic system through the 

eight points a, 8, 6’; the conic through a, 8’ and the right 

line joining 8 make up a second system through the same 

eight points; hence the ninth point of intersection with the 
curve must be common to both systems; that is to say, the 
lines joining the points 8, 8’ meet the curve in the same point, 

Q.E.D. This point was in the first edition called the opposite 
of the system of four given points; but now, in conformity 

with the nomenclature of Prof. Sylvester’s remarkable theory 

of residuation, which will be presently explained, is called the 
coresidual of the system of four points. This point is easily 
constructed by taking for the conic through the four points 
a pair of lines. Let the line joining the points 1, 2 and 
the line joining the points 3, 4 meet the cubic-in points 5 and 6 
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respectively, then the line joining 5, 6 meets the curve in the 
coresidual required. And since the grouping of the four points 
is arbitrary, the construction can, it is clear, be performed in 

three different ways. 
Hence, for example, we infer that through four points on 

a cubic four conics can be drawn to touch the curve elsewhere, 

viz. the conics passing through the points of contact of the four 
tangents which can be drawn from the coresidual. 

155. Let us apply the rule just given to construct the point 
coresidual to four consecutive points on the curve. The line 

joining the points 1, 2 is then a tangent, and the point 5 in 
which it meets the curve is the tangential of the point 1; 

similarly, the line 34 meets the curve in a point 6, which is 

consecutive to the point 5; it follows that the coresidual re- 
quired is the point where the tangent at the tangential point 5 
meets the curve again; that is to say, it is the tangential of 
the tangential, or, as we shall say, the second tangential. 

If then, for example, it be required to draw a conic passing 

through the four consecutive points, or, as we may say, having 
a four-point contact with the curve, and elsewhere touching 

the curve, the point of contact is, as we have seen, a point 

of contact of tangents from the second tangential to the curve. 
One of these is the tangential‘of the point (1), and the corre- 
sponding conic degenerates into two right lines; the remaining 

three give solutions of the problem. 
Again, if it be required to describe a conic passing through 

five consecutive points of the curve (or having a five-point 
contact with the curve), this is done by constructing the sixth 

point in which the conic meets the cubic, viz. this is the point 
where the line joining the point (1) to its second tangential 

meets the curve again. In order that this point should coincide 
with the point (1) it is necessary that the line last named should 

touch the curve at (1); or, what is the same thing, it is 

_ necessary that the first and second tangential should coincide. 
Now a point which coincides with its tangential is a point of 

inflexion; hence, on a non-singular cubic there are twenty-seven 

points at each of which a conic can be drawn, having a six- 
point contact with the curve ; viz. these are the points of contact 
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of the three tangents which can be drawn from the nine ports of 
ainflexion. 

156. The theorem (Art. 29) as to the intersection of two 

cubics was generalized in Art. 33. The theorem there given 
_is applied to the case of the cubic by writing p=3, and it then 

- becomes every curve of the n™ degree which passes through 3n—1 

fixed points on a cubic passes through one other fixed point on 

the cubic. It is to be observed, that for n=1, or n=2, one and 
only one curve of the n™ degree can be described passing 
through 3n—1 points on a cubic, and the theorem asserts 
nothing; when nm is greater than 2, more than one such 

curve can be described, and the curves all pass through one 

other fixed point on the curve, as has been just stated. And, 
as was explained in Art. 33, if it were attempted to describe a 

curve of the n™ order through 3x” points taken arbitrarily on 
a cubic, n being greater than 2, the curve so described would 

in general not be a proper curve, but would be a complex 
consisting of the cubic itself, and a curve of the order n- 3. 

157. If of the 3 (m+ n) intersections of a curve of the (m +n)™ 
order with a cubic, 3m lie on a curve of the m™ order U., the 
remaining 3n lie on a curve of the n™ order. For, as has been 
just remarked, through 3n—1 of these 3n points, a curve of 
the n™ order U, can always be described; and this, together 
with U makes up a system of the order m+n which (Art. 156) 

passes through the remaining point, and since this point cannot 

_lie on U_, which already meets the cubic in 3m points, it must 
lie on U.. 

158. We shall now explain the nomenclature introduced by 
Prof, Sylvester, and in conformity with it re-state and extend 
some of the preceding propositions. If two systems of points 
a, 8, together make up the complete intersection with the cubic 
of a curve of any order, one of these systems is said to be 

the residual of the other. Since the total number of intersec- 
tions of a cubic with any curve must be a multiple of three, 

it is evident that if the number of points in the system a be 
of the form 3p+1, that in the system 8 must be of the form 
3q—1, and vice versa. We may call these positive and negative 
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systems respectively, and say that the residual of a positive 
system is a negative system, and vice versa. The simplest 
positive system consists of a single point, answering to p=0; 
the simplest negative system of a pair of points, answering to 

q=1. In this case, evidently the one is the residual of the 
other when the three points are on a right line. Since through 
a given system of points a, an infinity of curves of different 

orders may be described, it is evident that a given system of 
poimts a has an infinity of residuals B, 6’, 8”, &e. Two 
systems of points 8, 8’ are said to be coresidual if both are 
residuals of the same system a. For example, in Art. 154 
through four points a on a cubic we supposed conics to be 
described meeting the curve again in pairs of points 8, 8’, Kc. ; 
then any one of these pairs is a residual of a, and any two of 
them are coresidual. Again, if the line joining the pair 8 

meet the curve again in a point a’, this point, as well as the 

four original points, is a residual of the group f, and this point 
a’ is therefore, as we already called it, coresidual with the four 
points a. It is obvious that two coresidual systems of points 
must either be both positive or both negative. 

The theorem of Art. 156 may be stated thus: two points 
which are coresidual must coincide. In fact, we there saw that 
if through 3p—- 1 points a we describe a curve U, meeting the 
cubic in the residual point 8, and if through the same points 

a we describe a second curve of the p” order meeting the 
cubic again in a point §’, the coresidual points 8, 8’ arrived 
at by the two processes, are one and the same point. 

159. If two systems B, B' be coresidual, any system a’ which 
is a residual of one will be a residual of the other. Say that 
through any system « two curves U,, U, are described meeting 

the cubic again in systems 8, §’, then these two systems are 
by definition coresidual; and what is now asserted is that if 

through 8’ be drawn any curve U, meeting the cubic again in 
a system of points a’, then the points 8 and a’ also make up 
the complete intersection of a curve with the cubic. For since 
the systems a and 8 together make up the intersection of a 
curve U,, with the cubic, and a’ and #’ make up its intersection 

with a curve U,, the four together make up the intersection 
T 
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with the cubic of a curve whose order is +r: but the systems 
a and #' together make up the intersection with the curve U, 
of the order g, therefore (Art. 157) the systems a’ and 8 together 

make up the complete intersection of the cubic with a curve 
whose order is p+r—q. 

Hence also two systems which are coresidual to the same are 

coresidual to each other. If 8 and §' are coresidual as having 
a common residual a, and if 8’ and @” have a common residual 

a’, then by what has been just proved a is a residual also of 
B",and a’ of B: that is, if 8, B” are each of them coresidual 
with 8’, then 8, 8” are coresidual with each other, for a, a’ are 

each of them a common residual of (3, 6”. 

160. We can now give for the theorem of Art. 154 a proof 
which will at once suggest Prof. Sylvester’s generalization of 
that theorem. The conic through four points « on a cubic 
meets the curve in two points 8, which are a residual of the 
system a. The line through the two points 8 meets the curve 

in a point @ which is residual to 8, and therefore coresidual 
toa. Ifthe same process were repeated with a different conic 

we should arrive at a point a”, also coresidual to the system 

a, and therefore to the point « ; and the two points a’, «” being 
coresidual must coincide (Art. 158). 

Now, in the first place, it is evident that the same proof 
would hold good, if instead of four points we started with any 
positive system of 3n+1 points P. A curve through them of 

order p + 1 meets the cubic again in two other points, and the 
line joining these meets the curve in a point coresidual to P, 
and which is the same point whatever be the curve of order p+. 

But, in the second place, instead of proceeding from the group 
P to the coresidual point by two stages, we might employ any 

even number of stages. ‘Thus through the 39+ 1 points P de- 

scribe a curve U,,,, and the residual is the negative system NV 

of 37-1 points. Through N describe a curve U,,,, and we get 
a residual P’ of 3s+1 points. In like manner, from P’ we 
can derive a residual of 3¢—1 points, and so on. And at 
this or any subsequent stage where we have a negative 
system of 3t—1 points, by describing through them a curve 

U, we can obtain a residual of a single point. Prof. Sylvester’s 
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theorem is, that this point is in all cases the same, no matter 

what the process of residuation by which it is arrived at. 
In fact, the system N is a residual of P; P’ is a residual 
of .V, and is coresidual of P; N’ is a residual of P’, coresidual 
therefore with NV, and therefore residual also to P, and so on, 

Any positive system in the series is residual to every negative 

system, and coresidual to every positive system. The point 
therefore at which we ultimately arrive, is coresidual to the 

original positive system, and must be identical with the point 
coresidual of the same system obtained by any other process. 

For example, if through four points we describe a cubic meeting 
the curve in five other points; through these five another cubic 
giving a residual of four other points, through these four a 

quartic giving a residual of eight points; finally, through these 

eight a cubic meeting the curve in one other point, this point is 
the same as that obtained from the original four by the process 

of Art. 154. And similarly, starting with any negative system 
of 3¢g-1 points N, we may after any odd number of stages 
arrive at a single point, which will be the residual of the original 
system, and as such, independent of the particular process of 
residuation. 

161. The principles just established, enable us to find by 
linear constructions, the point residual or coresidual to a given 
negative or positive system. For example, if it were required 
to find the point residual to eight given points, join them any 

way in pairs, and the joining lines form a quartic system meet- 
ing the curve in four new points residual to the given eight: 

join these again in pairs, and we obtain a system of two points 
coresidual to the given eight; the point where the line joining 

these meets the curve is the residual point required. Or, 
again, we may replace any four of the given points by their 

coresidual point, constructed as in Art. 154, and the problem 
is reduced to finding the residual of a system of five points; 

and similarly, replacing any four of these by their coresidual, 

reduce the problem to finding the residual of a system of two. 
It is in any of these ways easily seen, that the residual of a 

system of eight consecutive points at a given point of the cubic 
is the third tangential of the given point. 
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In this method of finding by linear construction the ninth 

point common to all cubics which pass through eight given 
points, it is assumed that one cubic through the eight points 
is given; and thus the question is not the same as that of 

finding the ninth point when only the eight points are given. 
Dr. Hart has shown, that in the latter question the ninth point 
can also be found by linear construction, though by a more 
difficult process.* 

162. We conclude this section with a few remarks as to 
systems of cubics having several pointscommon. If we are given 

eight points on a cubic, or eight linear relations between the 

coefficients in the general equation, we can eliminate all the 
coefficients but one, so as to bring the equation to the form 
U+kV=0. Similarly, if we are given seven points, or seven 
linear relations, the general form of the equation can be reduced 
to U+kV+lW=0, U, V, W being three cubics fulfilling the 

seven given conditions, and the two constants /, Z still at our 
disposal, enabling us to fulfil any two other conditions. And so 
again if we are given six points, the general form of the equa- 

tion is U+kV+1W+mS=0. We may take for U, V, &e. 
systems of three lines passing each through two of the given 
points. Thus, the six points being a, d, ¢, d, e, f, and ab=0 

denoting the equation of the line joining a, 4, one form of the 
equation of the required cubic is 

ab.cd.ef + k.ac.be.df + l.ad.bf.ce + m.ae.bd.cf =0. 

Since this equation contains three indeterminates, every other 
cubic through the six points (for example, af.dc.de) must be 

capable of being expressed in the above form, and the pre- 

ceding equation would gain no generality if we were to add to 

it a term n.af.bc.de, since this itself must be the sum of the 
preceding four terms multiplied each by some factor. 

In precisely the same manner as (Conics, Art. 259) we derived 

the anharmonic property of the points of a conic from the equa- 

tion ab.cd =k.ac.bd, we can derive from the equation just 
written the following, which is the extension of the anharmonic 

theorem to curves of the third degree: “If six given points on 

* Cambridge and Dublin Mathematical Journal, vol. vi. p. 181. 
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such a curve be joined to any seventh, and if any transversal 
meet this pencil in points a, d, c, d, e, f, then the relation holds 

ab.cd.ef +k.ac.be.df+l.ad.bf.ce+ m.ae.bd.cf=0, 

where k, 7, m are constants, whose value is the same for each 
particular curve through the six points.” The reader can easily 
conceive the number of particular theorems which may be 

derived from this (as in Conics, Art. 326), by examining the 

cases where some of the points are at an infinite distance. 

163. We saw (Art. 41) that to be given a double point was 
equivalent to three conditions. If then we have a double point 
and five other points, one more condition will determine the 

curve, which may, therefore, be expressed by an equation of 

the form S—S'=0, where S, S' are two particular curves of 
the system. We may write it in the form 

(oabed) oe — k (oabce) od = 0, 

where {oabcd) denotes the conic through the double point o and 
the four points abcd. 

In like manner we may write the equation of the cubic 
through the double point and four other points 

oa.0b.cd + k.ob.oc.ad + l.oc.oa.bd =03 

and, as in the last Article, the same relation holds between the 
intercepts on any transversal by the line joining these points to 
any point of the curve. 

164, By the help of the same method (Conzes, Art. 259) of 
expressing the anharmonic ratio of a pencil in terms of the perpen- 
diculars let fall from its vertex on the sides of any quadrilateral 
whose vertices lie each on a leg of the pencil, we can find the 
locus of the common vertex of two pencils, whose anharmonic 
ratio is the same, and whose legs pass through fixed points, 

two of the fixed points being common to both pencils. For if 
ab=0 denote the equation of the line joining the points ab, we 
get an equation of the form 

or ao.bp.cd = ab.co.dp. 
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When 9, p are the two circular points at infinity, this gives us 
( Conics, Art. 358) the locus of the common vertex of two triangles 

whose bases are given and vertical angles are equal, and we 

see that it is a curve of the third degree passing through those 
circular points. 

If the difference of the vertical angles were given, this would 
be equivalent (Conics, Art. 358) to the ratio of two anharmonic 

functions, and we should be led to an equation of the form 

ao.bp _ > co.dp 

ap.bo _ cp.do’ 

which represents a curve of the fourth degree, having the two 
circular points for double points. 

SECT. II.—POLES AND POLARS. 

165. We next recapitulate and apply to the cubic the 
theorems about poles and polars which we have already 

obtained. Every point O (2’, 7’, 2’) has, with respect to a cubic, 
a polar line and a polar conic, whose equations respectively are 

OT AM: 50:d WD dU, dU, dU _ 
© ae 8 dy at ae 8 aga F 

The equation of the polar conic may also be arranged according 
to the powers of a, y, z, and will then be 

a'x’ + b'y' + 2" + 2f'y2 + 2q'zx + 2h'xy =0, 

where a’, b', &c. represent the second differential coefficients 
written with the accented letters. 

The polar conic is the locus of the poles of all right lines 

which can be drawn through O, and thus every right line has, 

with respect to a non-singular cubic, four poles, namely the 
intersections of the polar conics of any two points on the line. 

The polar conic passes through the points of contact of the six 
tangents which can in general be drawn from O. In the case 
of a nodal cubic, the polar conic passes through the double 
point and meets the curve elsewhere only in four points; and 

every line has but three poles; since the two polar conics (each 
passing through the double point) intersect in only three other 
points. In the case of a cuspidal cubic, the polar conic passes 
through the cusp, touches the cuspidal tangent and meets the 
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curve elsewhere only in three points; and every line has but 
two poles. Ifthe cubic break up into a conic and a right line, 
the polar conic of a point O passes through their intersections, 

and every line has but two poles. The polar conic also passes 

through the intersection of the conic with the polar of O with 

respect to it; for it is easily seen that if we perform on LS, 
yy 

the operation A or 2 +y Eta z' — ee , the result is L'S+ LAS. 

If the cubic reduce to three fo tive xyz=0, every polar 
conic passes through the vertices of the triangle formed by 

them, and every right line has but one pole. In this case the 

equations of the polar line and polar conic are respectively 

xy'2' + y2'x' +2a'y'=0, w'yet+y'zx+2zxy=0, 

or Seo Bisk chdin Bivied: 
ee Gee eis” Raleet 

The equation just given affords at once a geometrical con- 
struction for the polar line, M 
since it appears from Conics, 

Ep 

A F B 

Art. 60, that if the point O in 

xy is (Contcs, Art. 127) = , + = = 0, and is therefore constructed 

the figure be «'y’'z’, the line 

IMN will be that whose 

equation has been just 
written. The tangent to 

the polarconic at anyvertex N 

by joining the vertex xy ; the point where the polar line meets 
the opposite side z. 

166. If any line through O meet the cubic in points A, B, C, 

the point P in which meets the polar line is determined, since 
1 1 1 ; 

— 04+ OBt OG’ If a second line 

through O meet the cubic in points A’, B’, C’, the point P’ in 

which the polar meets this line is also determined, and therefore 
the polar line itself, which must be the same for all cubics pass- 

ing through the six points 4, B, C, A’, B’, C’. Thus then we 
can by the ruler alone construct the polar line of O with respect 

to the cubic; for we have only to draw two radii through O, 

(Art. 132) we have 
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and construct, by Art. 165, the polar of O with respect to the 
triangle formed by 44’, BB’, CC". 

The metrical relations, given Art. 134, shew also that when 
the points A, B, C are given the two points in which the line 

OA meets the polar conic are likewise given. We see then, 
as before, that if we draw three radii through the origin meet- 

ing the curve in A, B, C, A’, BY, C’, A”, B’, C", the polar 

conic of O is the same with regard to all cubics passing through 
these nine points. The points A, A’, A” may be taken as 
the points in which any transversal meets the curve, and the 
problem of constructing the polar conic of O with respect to 

a cubic may be reduced to constructing it with regard to the 

' system made up of the line 4A’A”, and the conic through the 
six remaining points. 

We consider now in more detail the cases (1) where O isa 

point on the curve, (2) where it is a point on the Hessian. 

167. If from two consecutive points 0, O' of the curve we 
draw the two sets of tangents OA, OB, OC, OD; O'A, O'B, 
O'C, O'D, any tangent OA intersects the consecutive tangent 

O'A in its point of contact. Now the four points of contact 
A, B, C, D lie on the polar conic of O, which also touches the 
cubic at the point O (Art. 64); hence the six points OO'ABCD 
lie on the same conic, and therefore the anharmonic ratio of 
the pencil {O.ABCD} is the same as that of the pencil 
{O'.ABCD}. Since then this ratio remains the same when we 
pass from one point of the curve to the consecutive one, we leartf 
that the anharmonic ratio is constant of the pencil formed by the 

four tangents which can be drawn from any point of the curve. 
We shall afterwards give an algebraical proof of this 

theorem, by shewing that the anharmonic ratio of four lines 
given by a homogeneous biquadratic in 2 and y, can be ex- 
pressed in terms of the ratio of the invariants S* and 7” of the 
biquadratic, and that when the four lines are tangents drawn 
from a point on a cubic, this absolute invariant of the pencil can 
be expressed in terms of an absolute invariant of the cubic, so 
as to be the same, no matter where the point be taken. This 
invariant is a numerical characteristic of the cubic unaltered by 
projection or any other linear transformation. It was shown 
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(Higher Algebra, Art. 213) that by the value of this invariant of 
a biquadratic, we can discriminate those whose roots are two 
real and two imaginary, from those whose roots are either 
all real or all imaginary. Consequently, if from any point of a 
cubic the four tangents which can be drawn to the curve are 
two real and two imaginary, the same will be the case from 
every point of the curve; and, in like manner, if the tangents 
from any point are either all real or all imaginary, the tangents 

from every point are either all real or all imaginary. On this 

is founded a fundamental division of non-singular cubics into 
two classes, those to which from each of their points can be drawn 
two and only two real tangents, and those to which the tangents 

may be either all real or all imaginary. This remark will 
be further developed in the section on the classification of cubics, 

and it will there be shewn that, in the second case the cubic 
consists of two distinct portions, from every point on one of 

which portions the tangents are all real, and on the other 
portion are all imaginary. 

168. It follows, from Art. 167, that, if O, Pbe any two poin’s 
of the curve, through these points can be drawn a conic passing 

through the four points where each of the tangents from the 
first point meets the corresponding tangent from the second. 
The anharmonic ratio of four points abcd is unaltered by writing 

them in the order bade or cdab or dcba; hence, by taking the 

legs of the second pencil successively in each of these four 
orders, we see that the sixteen points of intersection of the 
first set of tangents with the second, lie on four conics, each 
passing through the points OP. 

Let the cubic be circular, that is to say, let it pass through 
the imaginary points J, J at infinity; then by taking these 
for the points O, P we see that the’sixteen foci of a circular 
cubic lie on four circles, four on each circle.* 

169. When O ts a point on the curve, every chord through ‘tt 

ts cut harmonically by the curve and by the polar conic of O. 

* This theorem was first otherwise obtained by Dr. Hart, and thence was 

suggested to me the theorem of Art, 167, 

U 
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We saw (Art. 78) that the intersections with the curve of the line 
joining any two points are determined by the equation 

MU' + pA’ +rAWA + pw U=0. 

~ When a’y’z’ is on the curve, U'=0, and the preceding equation 
becomes divisible by w, and if further, the points xyz, a'y'z’ are 
connected by the relation A = 0, the remaining quadratic is of 
the form 2° A’+ u* U=0, the roots of which being equal and 
opposite, we see, as at Conics, Art. 91, that the line joining the 
two points is cut harmonically by the curve. The same thing 

may also be proved by taking the point O for the origin, and 
finding the locus of harmonic means of all radii vectores through 

O. We proceed exactly as in Art. 132, making first A =0, 
and we find immediately 

2 (Bu + Cy) + Da’ + Exy + Fy’ =0, 

which is the equation of the polar conic of the origin. - 
It is proved (as in Art. 136) that the tangent to the polar 

conic at the point where any chord meets it passes through 

the intersection of the tangents to the cubic at the points where 
it is met by the same chord, and is the harmonic conjugate to 
the line joining their intersection to the point O. 

170. Let us now consider more particularly the case where 
O is a point of inflexion. It was shewn (Art. 74) that the 
polar conic of a point of inflexion breaks up into two right 
lines, one of them being the tangent at the point. And the 

same thing would appear from the equation of the polar conie 
of the origin just given. For, in order that the origin should 

be a point of inflexion and the axis of y the tangent at it, we. 
must have (see Art. 46) d=0, B=0, D=0, when the equation 
of the polar conic (Art. 169) reduces to | 

2Cy + Hay + Fy’ =0. 

The factor y is evidently irrelevant to the problem of the locus 
of harmonic means; we learn therefore that if radi vectores be 
drawn through a point of inflexion, the locus of harmonic means 

will be a right line.* And, conversely, if the locus of harmonic 

a 
f 

* This theorem is Maclaurin’s; De Linearum Geometricarum Proprietatibus E 
Generalibus, Sec. 111. Prop, 9, E 

ne ie a ee 

~~ 

f 
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means be a right line, the point O is a point of inflexion. For, 
Art. 74, the only other case in which the polar conic can break 
up into two right lines is when O is a double point, and that 
case does not apply to the present problem, since a line 

through the double point must meet the curve only in one 
other point. 

We shall callthe line just found the harmonic polar of the 
point O, to distinguish it from the ordinary polar line which 
is the tangent at O. 

171. The point O possesses, with regard to the harmonic 
polar, properties precisely analogous to those of poles and polars: 
in the conic sections. Thus if two lines be drawn through 0, 
and their extremities be joined directly and transversely, the 

joining lines must intersect on the harmonic polar. This is an 
immediate consequence of the harmonic properties of a quad- 
rilateral. 

Hence again, as a particular case of the last, tangents at the 
extremities of any radius vector through O must meet on the 

harmonic polar. 
The harmonic polar must pass through the points of contact 

of tangents which can be drawn through 0, for, since OL’ RR" 
is cut harmonically, if 2’ coincide with &”, it must coincide 
with &. Hence through a point of inflexion but three tan- 
gents can be drawn, and their points of contact lie on a 

right line. 
If the curve have a double point, it is proved, in precisely 

the same way, that it must lie on the harmonic polar. 
The first theorem of this Article may be otherwise stated 

thus: if three points A’B’C’ lie on a right line, and the lines 

joining O to them meet the curve again in A”B"C", these will 

also lie on a right line, and the two lines will meet the harmonic 
polar in the same point. Ifnow we suppose 4’,B’,C' to coincide, 
we arrive again at the theorems that the line joining two points 

of inflexion must pass through a third, and that the tangents at 
any two meet on the harmonic polar of the remaining one. 

| 172. If through any point of inflexion O there be drawn 
three right lines meeting the curve in A,, A,; B, B,; C,, C,, 

2? 2 
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then every curve of the third degree through the seven points 
OA,A,B.B,C,C, will have O for a point of inflection. For let 
the three lines meet the harmonic polar in A, B, C, then these 
points are also common to the loci of harmonic means of the 
point O, with regard to all curves through the seven points. 
This locus, then, which would in general be a conic, must, 
since these three points of it are in a right line, be for all these 
curves this same right line; and therefore (Art. 170) the point 
O must be a point of inflexion. 

173. We have seen (Art. 74) that the points of inflexion of a 

curve of the third degree are the intersections of the curve JU 
with the curve H, which is also a curve of the third degree. 
Every curve of the third degree has therefore, in general, nine 

points of inflection, only three of which, however, are real (see 

Art. 125, Ex. 3). Since, also, we have proved that the line 
joining two points of inflexion must pass through a third, 

through each point of inflexion can be drawn four lines, which 
will contain the other eight points. It follows then, as a par- 

ticular case of the last Article, that any curve of the third degree, 

described through the nine points of inflexion, will have these 
points for points of inflexion.* 

174. Of the lines which each contain three points of inflexion, 
since four pass through each point of inflexion, there must be in 

all 4 (4x 9) =12.T 
If we attempt to form a scheme of these lines, it will be found 

that it can only differ in notation from the following: 
123, 456,789; 147, 258, 3693} 
159, 267, 848; 168, 249, 357. 

Hence it will follow that any cubic passing through any seven 

* This theorem is due to Hesse, who showed that if U be a cubic, # its 

Hessian, aU +bH=0 the equation of any cubic through their intersections, then 

the equation of its Hessian is of the same form. The method of proof here 

adopted is Dr. Hart’s. 
+ It is easy to see that we may have nine real points lying by threes in ten 

lines, but not in a greater number of lines: thus the nine points of inflexion cannot 

be all real, which agrees with the remark, Art. 178. 

t+ Clebsch has remarked that if we arrange the nine elements 1, 2,3 the systems 

4, 5, 6 
7, 8, 9 

of lines are the three rows, the three columns, those forming positive, and those 

forming negative, elements of the determinants, . : 
? 
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of the points of inflexion will have one of these for a point of 
inflexion; for, take any seven (say the first seven), and it will 
appear from the above table that they lie on three right lines 
(147, 267, 357), intersecting in a common point on the curve, 

and therefore, by Art. 172, that common point (7) is a 

point of inflexion on them all. 
From the manner in which these lines have been written, it 

appears that they may be divided into four sets of three lines, 

each set passing through all the nine points; or that, if we form 
the equation U+ 7XH=0, there are four values of A, for which 
the equation reduces itself to a system of three right lines. 

For a direct proof of this, see the last section of this Chapter. 

175. Let us now consider the case (2) where 2’y'z’ is on the 
Hessian, and where its polar conic therefore breaks up into two 
right lines. It was proved in general (Art. 70) that if the first 

polar of any point A has a double point B, the polar conic of B 
has a double point A. But in the case of cubics, the first polar 

is the polar conic, and this theorem becomes, [f the polar conic 
of A breaks up into two lines interseeting in B, the polar conic of 
B breaks up into two right lines intersecting in A. In fact, if the 
polar conic of a'y'z’ breaks up into two right lines, the coor- 
dinates of their intersection xyz satisfy the three equations 

got by differentiating the equation of the polar conic. But 

(Art. 165) this last equation may be written in either of the 
equivalent forms | 

Ua! + Uy! + Uz =0, 
or ax’ + by’? +2? + 2f'yz + 2g'zx + 2h'xy =0, 

and the differentials may therefore be written in either of the 
equivalent forms 

ax’ +hy'+ gz'=0, ha’ + by'+fze'=90, gu’ +fy'+cz'=0, 

adethy+g2=0, ha+by+fz=0, gat+tfyt+cz=0, 

whence we see that these equations are symmetrical between 

xyz and 2'y'z’, and therefore that the relation between those 
points is reciprocal. Both A and B are evidently points on the 
Hessian, on which they are said to be corresponding points, 
and it will presently be shewn that they are so also in the 

sense explained, Art. 151, that is, the tangents to the Hessian 
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at the points A, B respectively meet in a point of the Hessian.* 
In the case of the cubic, therefore, the curve called the Steinerian 
(Art. 70) is identical with the Hessian. 

176. The equation of the polar conic of any point what- 
ever &nf being EU,+7U,+¢U,=0, the whole system of polar 
conics form a system of conics such as that discussed, Conées, 
Art. 388, viz. the equation of which involves linearly two in- 
determinates. The equation of the polar of the point A with 
regard to any conic of the system is 

E (aa! + hy’ + ga) +m (ha' + by’ + fa’) + O(ga' + fy’ + c2') =0, 
which is satisfied by the coordinates of B, whence we see that 

the polar of either point A, B passes through the other, and 
that therefore the Hessian of the cubic is the Jacobian (Conics, 

Art. 388) of the system of polar conics. Since A and B are 
conjugate with regard to any conic of the system, the line 

joining them is cut harmonically by every one of these conics, 

and the points in which the conics meet that line form a system 

in involution of which A and JB are the foci. The two points 
in which any of these conics meets the line AB can only coin- 

cide at either of the points A, B; and, consequently, if any of 
the conics break up into two right lines intersecting on AB, 

the point of intersection must be either A or B, unless AB 

be itself one of the lines. Now since the Hessian of a cubic 
is itself a cubic, AB meets it in three points; that is to say, 

in a third point C besides the points A, B. Every point on 

the Hessian is, as we have seen, the intersection of the two 
lines into which some polar conic of the system breaks up, and 

it follows from what has been just proved, that of the two 
lines which intersect in C one must be AL. Thus, then, from 

the system of points whose locus is the Hessian we may derive 
a system of lines, viz. by taking the pairs of lines which are 
the polar conics of each point on the Hessian. ach line of 

the system meets the Hessian in three points; two of them 

* It will subsequently be shown that there are three cubic curves having each 

of them the same Hessian: the correspondence of the points A, B on the Hessian is 

of one or another of the three kinds of correspondence according as the cubic curve 

is one or another of the three cubics. 
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A, B are corresponding points on the Hessian, and the third, C, 
which we may call the complementary point, is the point in 

which the line meets the conjugate line. 

177. The curve which is the envelope of the system of 
lines just mentioned has been studied by Prof. Cayley, and 

has on-that accoynt been called by Cremona the Cayleyan of 
the cubic.* It is of the third class, as we see by examining 
how many of these lines can pass through an arbitrary point P. 

Any point 1M whose polar conic passes through P must lie 
on the polar line of P (Art. 61), and in order that the polar 

conic should break up into lines, JJ must be on the Hessian. 
There are then evidently three points MW, whose polar conic 

reduces to a pair of lines, one of which passes through P. There 
is not any double or stationary tangent, and the curve is there- 
fore of the sixth order. 

Every line of the system joins corresponding points on the 
Hessian (Art. 176); therefore the Cayleyan may at pleasure 

be considered as the envelope of the lines into which the polar 
conics of the points of the Hessian break up, or as the envelope 
of the lines joining corresponding points on the Hessian. In 
the case, however, of curves of higher degree, the envelope of 
the lines joining the corresponding points A, B (Art. 70) is 

distinct from the envelcpe of the lines into which polar conics 
may break up. | 

The Cayleyan may also be regarded (Art. 176) as the 
envelope of lines which are cut in involution by the system of 
polar conics. It was shewn, Conics. (Art. 3882), how the equation 

of the envelope regarded from this point of view may be written 

down, and that the curve is of the third class, 

178. Let us now examine what are the four poles with 
respect to the cubic of the tangent to the Hessian at any point A. 
The four poles in question are the intersections of the polar conic 
of A with the polar conic of the consecutive point A’ on the 
Hessian. ‘The polar conic of A is the pair of lines BL, BN (see 

fig. p. 153), and the polar conic of A’ is a pair of lines consecutive 

* It was denoted by Prof. Cayley himself by the letter P, and called by him 
the Pippian. 
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to these. Now BL meets the line consecutive to BN in the 
point B; BN meets the line consecutive to BL in the same 
point; and BL, BN meet the lines respectively consecutive 

to them in their points of contact with their envelope. The 
four poles in question are thus the point B counted twice, and 
the points of contact with the Cayleyan of the lines BZ, BN. 
Thus, in particular, the polar line with respect to the cubic of 

any point on the Hessian is the tangent to the Hessian at the 
corresponding point. It may be directly inferred from what 
has been said, that the Cayleyan is, as stated above, of the 
sixth order. For the equation of the locus of the poles with 
respect to the cubic of the tangents to the Hessian, is found 
by expressing the condition that «U,+yU,+2U, should touch 
the Hessian. This condition involves the quantities U,, U,, U, 
in the sixth degree, and the locus is therefore of the twelfth 

order. But, from what has been proved, the Hessian must 
enter doubly as a factor into this equation; the remaining 

factor therefore, which is the Cayleyan, is of the sixth order. 

179. The locus of points whose polar lines with regard to 
one curve U touch another curve V, evidently meets U at its 
points of contact with the common tangents to U and V3 for 
the polar of any point on U is the tangent to U at the point, 

and if it is also a point on the locus, the polar by hypothesis 
touches V. We have just seen that when JU is a cubic and 
V its Hessian, the locus consists of the Cayleyan together with 

the Hessian itself counted twice. The cubic and the Hessian 
being each of the sixth class have thirty-six common tangents, 

And we now see that these common tangents consist of the 
tangents to U at the 18 points where it is met by the Cayleyan, 
and of the tangents to Uat the points where it is met by the 
Hessian; (that is to say, of the nine stationary tangents) these 
last tangents each counting for two; and in fact it was remarked 
(Art. 46, p. 33), that each stationary tangent to a curve 
may be regarded asa double tangent, as joining both the first — 
to the second, and the second to the third of three consecutive 
points.* 

* Reasons were given (Art. 47) for treating the cusp and the node, the stationary 

and double tangent, as distinct singularities; but in counting the intersections of 

a ot . 
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The polar conic of a point of inflexion A consists (Art. 170) 
of the inflexional tangent itself, together with the harmonic polar 
of A; and the point B corresponding to A is therefore the point 
in which the inflexional tangent meets the harmonic polar. 
And the tangent to the Hessian at B is the polar of A with 

respect to the cubic; that is to say, is the inflexional tangent 

itself. Hence, then, the nine points where the stationary tan- 
gents touch the Hessian are the points where each stationary 
tangent meets the corresponding harmonic polar. 

It may be inferred from what has been just proved, and it 
will afterwards be shewn independently (see note p. 150), that 

the problem to find a cubic, of which a given cubic shall be the 
Hessian, admits of three solutions. For the points of inflexion 
being common to both curves (Art. 173), we are given nine points 

(equivalent to eight conditions) through which the required cubic 

is to pass, and if we were given the tangent at any of these 
points .A, the cubic would be completely determined. But what 
has been just proved shews that this tangent may be any one of the 

three tangents (Art. 171) which can be drawn from A to the curve. 

180. The tangents to the Hessian at corresponding points 
A, B, meet on the 
Hessian. Let the 4 
polar conic of A | 

be BL, BN, and 
of Bhe AR, AN; 
then L, M, N, & 
are the four poles 
of the line AB, 
and the polar conic 
of every point of 
AB passes through 

these four points. 

If, therefore, this 
polar conic breaks 
up into two right lines, these lines must be LR, MN; and 

two curves, a cusp or node on one of them alike counts for two; and a stationary 

or double tangent to one of them alike counts for two among their common 

tangents, 

x 
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we see that D is a point on the Hessian, and that it cor- 
responds to the point Cin which AB meets the Hessian again. 
But the tangent at B to the Hessian is.the polar of A with 

respect to the cubic, which must also be its polar (Art. 60) with 

respect to the polar conic. of A (BL, BN); therefore, by the 
harmonic properties of a quadrilateral, this tangent is the line 
BLD; and in like manner the tangent at A is the line AD. 

If we are given the Hessian and a point on it A, the 
problem to find the corresponding point B admits of three 
solutions (see Art. 151). For if we draw the tangent at A 

meeting the curve again in D, B may be the point of contact of 
any of the three other tangents besides 4D, which can be drawn 
from D to the curve. These three solutions answer to the 

three different cubics, of which the given curve may be the 
Hessian. 

181. The points of contact with the Cayleyan of the four lines 
BL, BN, AR, AN lie on a right line. The poles of AD with 

respect to the cubie are the intersections of the polar conics 
of A and D; the former is the pair of lines BL, BN; the latter 
consists of the line 4B and a conjugate line passing through C. 

The four poles are therefore the point B counted twice, and the 

two points where Ca meets BL, BN. But AD being a tangent 
to the Hessian, it appears, from Art. 178, that the latter two 
poles are the points of contact of the lines BZ, BN, with their 

envelopes. In like manner the points of contact of AR, AN 
with their envelope lie on the same right line. This right line 

is itself a tangent to the Cayleyan, therefore the six points 

where it meets the Cayleyan are completely accounted for. In 

other words, any tangent to the Cayleyan is one of a pair of 

lines into which some polar conic breaks up; the other line 

of the pair joins two corresponding points on the Hessian; 

the four lines which make up the polar conics of these two 
points pass respectively through the four points where the 
given tangent meets the Cayleyan again. 

Again, to find the point of contact of any given tangent. 
with the Cayleyan, the rule we have arrived at is to take what 
we have called the complementary point on the given tangent, 
and join it to the corresponding point on the Hessian; the line 
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conjugate to this meets the given tangent in the point required. 
But we may hence deduce a simpler rule: for since the two 
lines last mentioned make up a polar conic, and since every 

polar conic divides harmonically the line joining two corre- 
sponding points, the rule is to take the three points in which 

the given tangent meets the Hessian, consisting of two corre- 

sponding points arid one complementary, and to take the har- 

monic conjugate of the complementary point with respect to 
the two corresponding points. 

182. Let us apply the preceding rules to the case where 
A is a point of inflexion, and B, the corresponding point, is the 
point in which the inflexional tangent meets the harmonic polar. 
The polar conic of B is then a pair of lines through A, and the 
polar conic of A is the inflexional tangent together with the 

harmonic polar. In order to find the points in which these 
four lines touch the Cayleyan, we take the point in which the 
line AB meets the Hessian again; but this is the point B, since 
AB touches the Hessian; and the line through B conjugate to 
AB, on which the four points of contact lie, is the harmonic 
polar. ‘T’hus, then, the point of contact of the inflexional tangent 

with the Cayleyan is the point where it meets the harmonic 
polar; or (Art. 179) the Cayleyan and the Hessian touch each 
other, having the nine inflexional tangents for their common 
tangents. ‘The Cayleyan, as a non-singular curve of the third 
class, has nine cusps, and the construction just given shews 
that the harmonic polars are the nine cuspidal tangents. 

183. It has been shown that the tangent to the Hessian at 
any point A meets the Hessian again in the point D, where it 
meets the polar of A with respect to the cubic. It follows that 

the tangent to a cubic at any point A meets the cubic again 
in the point where it meets the polar of A with respect to a 
cubic having the given cubic for its Hessian. Now such a cubic 
passes through the inflexions of the given cubic, and therefore 

its equation will be of the form aU+ 6H=0, and the equation 
of the polar of any point with respect to it will be of the form 

Diy AF or) a ( OH; 2 dit. 20 allt 
(ear ty Gy t* a) © a TY ag Tan) 
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It follows, then, that the point where any tangent meets the 
cubic again is found by combining the equations 

dU" ae ae OF 2 peti 5 « BAER SRS So 
Rae TY Gy t tag eo Oe he Gee oe 

In other words, the tangential of a point 2’y'z’ on the cubic is 
the intersection of the tangent to the cubic at that point with 

the polar of the same point with regard to the Hessian; and 
hence may immediately be derived expressions for the coor- 
dinates 2, y, 2 of the tangential in terms of a’, 9’, 2’, viz. they 

are proportional to U,H,—U,H,, U,H,-—UH,, U,H,— UA, 
functions of the fourth degree in 2’, y’, z’. 

= 0. 

184. The polar lines of the points on a given line axt+Byty2 
envelope a conic, which we call the polar conic of the given line. 

The equation of the polar of any point 2'y'z’ may be written 

ax” + by” + ca" + 2fy'2' + 2gz'a' + 2ha'y' =0, 

and the problem of finding the envelope of this, subject to the 
condition az’ + By'+yz'=0, is the same (Art. 96) as that of 
finding the condition that a line should touch a conic. The 

equation of the envelope required is therefore 

Ad’ + BB’ +Cy' + 2 By +2Gya+2HaB =0, 

where A, B, &c. have the same meaning as in the Conics, 
viz. be—f*, ca—g’, &c. They are therefore functions of the 
second degree in the coordinates x, y, z. It is obvious that the © 
polar conic of a line might have also been defined as the locus 
of points whose polar conics touch the given line. 

If the method of Art. 88 had been applied to find this 
envelope, the solution would be found to depend on the 
equations 

ax’ +hy' + gz'=da, ha' + by'+fze'=rB, ga’ +fy' + cz'=ry. 

But these are the equations by which (Conics, Art. 293) we 
should determine the pole of the given line with regard to 
x'U,+y'U,+2'U,. Hence, as might also be seen from geo- 
metrical considerations, the polar conic of a line is also the locus 
of the poles of the line with respect to the polar conics of all 
the points of the line. pe 
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185. Since the polar line of any point on a line is the same 
as if taken with regard to the three tangents at the points 

where that line meets the curve, the polar conic of a line is 
the same as if taken with regard to those three tangents. Let 
their equation be xyz=0. ‘Then to find the polar conic of a 
line is (Art. 165) to find the envelope of ay’z' + yz'x' + za'y'=0, 

subject to the condition ax’ +Py'+yz2,=0; and this is (see 
Conics, Art. 127) | 

vi (aa) + V (By) + V(2) = 
It follows that if the given line meet the cubic in the points 

P, Q, &, the tangents at 
esc points forming the 
triangle ABC, then the 

polar conic of the line 
touches the sides of this 
triangle in the points D, 
i, Ff, which are the har- 

monics of the points P, 
Q, & in respect to the 
point-pairs BO, CA, AB & | 

respectively. It is alia a priort that the polar conic is 
touched by the tangents to the cubic at P, Q, R, these being 
particular positions of the line whose pis eo is ‘ought. 

186. It follows from the definition that the tangents which 
can be drawn from any point to the polar conic of a right line 
are the polars of the two points where the polar conic of the 
point meets the right line. Hence the polar conic of a point 
meets a right line in real or imaginary points’ according as the 
point is outside or inside the polar conic of the line; a point 
being said to be outside a conic when from it real tangents can 
be drawn to the conic. It has been already remarked, that if 

a point lie on the polar conic of a line, its polar conic toiiche 
the line: 

In particular, since the hes conic of a double point is the 
pair of tangents at that double point, the polar conic of every 
line with regard to a crunodal cubic has the node outside the 
conic, and with regard to an acnodal cubic has the conjugate 
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point within it. If the cubic be cuspidal, the polar conic of 
every line passes through the cusp. 

187. It follows from the foregoing definitions, and from 
Art. 135, that if the given line be at infinity, its polar conic 
may be defined either as the envelope of the diameters of the 
cubic, or as the locus of the centres of the diametral conics 
of the cubic, or as the locus of points whose polar conic is a 
parabola. Its equation is found by making a and B=0 in 
the formula of Art. 184, and is C=0, or ab—h’=0; that 18 
to say, 

au @U (@#Uun. ak * dt ~ (dady) 
And it appears, from Art. 185, that this is the equation of the 
ellipse touching at their middle points the three sides of the 
triangle formed by the asymptotes. 

188. If the given line touch the cubic, then since the polar 
of the point of contact is the line itself, that line coincides 
with one of the positions of the enveloped line of Art. 184, 
and therefore touches the polar conic; and in no other case 

can a line be touched by its polar conic with regard to a non- 

singular cubic. Accordingly this principle has been used to 

form the tangential equation of a cubic. Since 4, B, &c. are 
functions in the coordinates of the second degree, the equa- 

tion of the polar conic, Ag” pha =0, may be written in 
the form 

A's? + By? + C'2? + 2F"y2+2G'zx+ 2H'axy =0, 

where A’, &c. are functions of the second degree in a, 8, y, and 
then the condition that this should touch the given line is 

(B'C'- fF”) a’ +&c.=0, which is of the sixth degree in a, 
8, y, and is the required condition that the given line should 
touch the cubic. 

If the given line touch the Cayleyan, then since it, togiltedl 
with another line makes up the polar conic of a certain point, 
the polar line of every point on the line passes through that 
point, and the envelope of Art. 184 accordingly reduces to a 
point. : 
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189. We next consider two cubics U, V, and investigate the 
problem to find a point whose polar with respect to each shall 
be the same; or, what is the same thing, whose polar with 
regard to any cubic U+AV=0 shall be the same. In order 

that «U,+yU,+2U, and xV,+yV,+2V, may represent the 
same line, we must have 

or U,V,— U,V,=0, U,V,— U,V,=0, UV,— UV,=0. 
From the first form in which the equations were written, it is 

plain that the three equations are equivalent to two; and that 
the curves of the fourth degree represented by the equations 
written in the second form have common points. But all their 
points of intersection are not common, for any values which make 
the numerator and denominator of any of the three fractions to 

vanish, satisfy two of the resulting equations but not the third. 

Subtracting then from the sixteen points common to the quartics 
represented by the first two equations the four points common to 
U,, V,, there remain twelve points common to all three quartics,* 

and these are the points required. 

190. Since the discriminant of a cubic is of the twelfth degree 
in the coefficients (Art. 69), there are in general twelve values 
of A, for which the discriminant of U+2AV will vanish; for 
if in the general expression for the discriminant we substitute 
for each coefficient a, a+ Aa’, we have evidently an equation of 

the twelfth degree to determine A (see Conics, Art. 250). The 
coordinates of the double point on any of these cubics satisfy 
the three equations (Art. 69) 

U,+2V,=0, U,+dV,=0, U,+AV,=0. 
And the system of equations obtained by eliminating \ between 
each pair of these equations is the same as that considered 

* So generally if U,, U,, U; be functions of the mth degree in the coordinates, and 

V, V2, V3 functions of the nth degree, the system of equations 

pa ee 
Bye Wer’, 

represents three curves of the order m+n, having m?+mn +n? common points 

(see Higher Algebra, Art, 257). 



160 POLES AND POLARS. 

in the last article. Hence, through the intersections of two cubics 

U, V there can be drawn twelve nodal cubics, and the polar of 
any of the twelve double points will be the same with regard to 

all cubics of the system U+XV. ‘These points have been called 
the critic centres of the system of cubics. , 

191. If we are given three cubics U, V, W, then the > 
coordinates of the double point of any cubic of the system, 

~U+pV+vW=0), satisfy the equations 

AU, + pV +vW,=0, XU,+ wV,+ v W, =0, 0U,+ wVi+vW,=0; 

therefore eliminating A, “, v we see that the locus of the double 
points is the Jacobian 

U, (V,W,- V,W,) + U, (V,W,- V,W,) + 0, (V,W,—V,W)=0. 
If the three cubics have a common point, this is a double point 
on the Jacobian; for if the lowest terms in x and y be in 
U, V, W respectively ax + by, a’x+b'y, a'x+b"y, the terms in 
the Jacobian below the second degree in w and y are easily 

seen to be 
a,b,ax+by 

a,b,@at+by 
"? " " ” a,b, ax+by 

which vanishes identically. ‘Thus, then, the locus of double 
points on all nodal cubics passing through seven fixed points 
is a sextic having these seven points for double points, since 
U, V, W may be taken for any three cubics through the seven 
given points. So likewise the double points on the nodal cubics, 

which can be drawn through eight points, are determined as the 

intersections of the two sextic loci, which we get by leaving out 
first one and then another of the eight given points. And since 
these sextics have six double points common, the number of 

their other intersections is 36 — 24 or 12, which agrees with the 
result of the last article. 

192. Of some of the twelve critic centres, the position can 
in some cases be at once perceived. ‘Thus, in the system 
Axyz +uvw =0, where u, v, w represent right lines, it is obvious 
that xyz is one cubic of the system, having for double points 

xy, yz, 2; im like manner wv, vw, wu are double points; there 
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are therefore but six other critic centres. We shall more par- 
ticularly study the system dXzyz+u’v=0, and will presently 

show that this system has but three critic centres, exclusive of 
the points xy, yz, zx, uv. Pliicker’s classification of cubics was 

derived from the study of this equation for the case where uw 

is the line at infinity, and consequently wv its satellite, and 

x, y, 2 the three asymptotes. We may then for any position 
of the lines a, y, z, v, study the forms which the curve assumes 

as we give different values to the parameter X3 and it will be 

readily understood, that each nodal curve in the series corre- 
sponds to a change from one form of the curve to another. 

‘Thus we have seen (Art. 39) that an acnodal cubic is the limiting 

form of a cubic including an oval as part of the curve; and 

again, if for one value of the constant, a cubic has two real 
branches intersecting in a node, the example of conics makes 

it easily understood, that for a small increase in the value of the 

constant, the cubic will have separated portions in two of the 
vertically opposite angles formed by the intersecting branches, 

while for a small decrease in the constant it will have portions 
in the other pair of vertically opposite angles. Hence the 
importance of the critic centres in this mode of studying the 

form of the cubic. 

193. Since the polar of any point with regard to wv passes 

through the point uv, any point which has the same polar with 

regard to xyz must lie on the polar conic of wv with regard 

to ayz, and it is therefore evident a prior?, that this is a locus on 
which the critic centres lie. In order completely to determine 

them, let us suppose that we have u=a+y+2, v=ax+by + cz; 
and we get our result in a more convenient form, if before 
differentiating Axyz+u*v we first divide all by u*. We then 
have, differentiating successively with respect to x, ¥, 2, 

Ayz (a - y — 2) rex (y —2 — a) Aay (2-a—y) _ 
(etyte  ° (tytey) °. e@ryt+eP 

ax ba Cz 
whence = J a I 

L-y-2@ y-2-“H 42-x-y 

and the form of the equations shows that the problem has been 

reduced to that of finding the critic centres of a system of two 
Y 



162 CLASSIFICATION OF CUBICS. 

conics, and that the three points required are the vertices of 
the common self-conjugate triangle of the conics 

ax’ + by’ + cz’=0, and w+ y4*+ 2" — 2yz—2zx —2ay=0, 

where it will be observed that the latter conic is the polar 
conic of u with respect to xyz; that is to say, when w is at 
infinity, it is the conic touching at their middle points the 
sides of the triangle formed by the asymptotes. Two critic 
centres will coincide in the point of contact when az’ + by’ + cz?=0 
touches this conic ; hence, if » be regarded as variable, the locus 

of double critic centres is the polar conic of w with respect to ayz. 
The condition of contact of these two conics is easily seen, by 
the ordinary rule, to be 

(6¢+ca+ab)=270°0'c’, ora@?4+b4+4+¢%=0, 

which is the tangential equation of the envelope of the satellite 

of w when two critic centres coincide. This answers (Ex. Art. 90) 
to the equation in point coordinates a! + y?+ 2! =0.* 

194. Any point on Aryz+u7%v may be determined as the 

intersection of z= @v with O6Azy+u*7=0. When w is at infinity, 
the latter equation denotes a system of hyperbolas having z, y 

for their asymptotes, and by the property of the hyperbola, the 

chords intercepted by these hyperbolas on any line z= 6v have 
a common middle point; namely, the point of contact of this 

line with one of the hyperbolas of the system. Evidently, if z= Ov 
either touch the cubic or pass through a double point on it, it 
must touch the hyperbola, the critic centre being in the latter 
case the point of contact. Hence, if any of the critic centres 

be joined to the finite points where the asymptotes meet the 
curve, the critic centres are the middle points of the chords 
intercepted by the cubic on the joining lines. 

SECT. III.—CLASSIFICATION OF CUBICS. 

195. We shall shew in the first place that the equation of 

every cubic may be brought to the form 

zy’ =ax’ + 38bx"2 + 3cx2z" + dz’. 

* For a fuller discussion of this theory, see papers by Prof. Cayley, “On a case 

of the involution of cubic curves,” and “On the classification of cubic curves,’ 

Transactions of Cambridge Philosophical Society, vol, X1., 1864. 

Moke 
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Every real cubic has at least one real point of inflexion, for 
imaginaries enter by pairs, and the total number of points of 

inflexion is odd, viz. either nine, three, or one (Art. 147). ‘If 
we take for the line z the tangent at the point of inflexion, and 
for x any other line through that point, the equation of the 
curve (Art. 51, vit.) will be of the form z/= az’, where ¢ is 
a function of the sécond degree, say 

y? + Qlye + 2myn+ pa? + Wque+re*, 

But now if we transform the lines of reference so as to take 
y +lz+ mz for the new y, the terms in ¢ containing y only in 
the first degree are made to disappear, and the equation takes 

the form first written in this article. The geometric meaning 

of the transformation we have made is that we take for 2 as 

above stated the tangent at a real point of inflexion za, and 
for y, the harmonic polar (Art. 170) of that point: for if we 

examine where any line through the point of inflexion meets the 
curve represented by the above equation, we find, on making 

the substitution z= Aw, that we obtain for y values of the form 
+x, shewing that the points where the line meets the curve 

are harmonically conjugate with respect to the point where it 
meets the line y, and to the point of inflexion. 

196. In classifying curves those distinctions may be 

regarded as fundamental which are unaffected by projection; 
or, in other words, which separate not only curves, but cones, 
of the same order. Among curves of the second order there 
is no such distinction, for there is but one species of cone. 
In order to ascertain whether such distinctions exist among 
cubics, it suffices to take the form to which, as shown in the 
last article, the equation of every cubic may be reduced, and to 
examine whether any and what varieties, unaffected by projec- 
tion, exist among the curves capable of being represented by 

it. And since we are now only concerned with varieties 
unaffected by projection, we may suppose the line 2 to be at 
infinity, and discuss the form 

y = ax’ + 3bx* + 3cx + d, 

as one capable of representing a projection of any given cubic. 
It will be observed that when a point of inflexion is at infinity, 
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a system of lines through it becomes a system of parallel ordi- 

nates, and the harmonic polar becomes a diameter bisecting 

them; and, in fact, for every value of x, the above equation 
gives equal and opposite values of y. 

The preceding equation has already been partially discussed 
(Art. 39), and from what was there said, it appears that the 

curves represented by it may be divided into the five following 
principal classes : 

The right-hand side of the equation may be resolvable into 
three unequal factors, and (L.) these factors are all real. The 

curve then consists (Art. 39) of an oval and an _ infinite 
branch. Or (II.) the factors are one real and two ima- 

ginary. The oval then disappears and the infinite branch 

alone remains. 
The right-hand side of the equation may be resolvable 

into two equal and one unequal factors, being of the form 
(a—«a)?(a—). Then we have the cases (III.), « less than 8 

when the curve is acnodal (Art. 39), the oval being reduced to 

a conjugate point; or (1V.), a greater than 8, when the curve is 

crunodal, the oval and the infinite branch being each sharpened 
out so as to form a continuous self-intersecting curve; (V.) the 

factors of the right-hand side may be all equal, and the curve 
is cuspidal (Art. 39). 

Newton has given the name “divergent parabolas ” to the 
curves considered in this article; and his theorem, which we 

have just established, is that every cubic may ke projected 

into one of the five divergent parabolas. 

_ 197. Instead of, as in the last article, supposing the 

stationary tangent to be projected to infinity, we may suppose 
the harmonic polar to be so projected. The point of inflexion 
will then become a centre, and every chord through it will be 

bisected. Interchanging z and y in the equation of Art. 195, 

and then putting z=1, the equation for this case becomes 

y =ax + 3ba°y + 3cxy’* + dy’, 
which is the equation of a central curve (Art. 131). As in 
Art. 196, there are five kinds of central curves according to 
the nature of the factors of the right-hand side of the equation, 
and in this way is established Chasles’s supplement of Newton’s 
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theorem, viz. that every cubic may be projected into one of the 

five central cubics. 

198. Corresponding to these five kinds of cubic, there are 
five essentially distinct species of cubic cones. A cone of any 

order may comprise two forms of sheet, viz. (1) a twin- 
pair sheet, or sheef: which meets a concentric sphere in a pair 
‘of closed curves, such that each point of the one curve is 

opposite to a point of the other curve (a cone of the second 
order affords an example of such a sheet); and (2) a single 

sheet, viz. one which meets a concentric sphere in a closed 

curve, such that each point of the curve is opposite to another 
point of the curve (the plane affords an example of such a 

cone). Now corresponding to the parabola I. of Art. 196, we 
have a cone consisting of a twin-pair sheet and a single sheet, 

and corresponding to II., we have a cone consisting of a single 

sheet only. It is evident that the crunodal, acnodal, and cus- 
pidal singularities are reproduced in the corresponding cones. 

The classification of cubic cones just made might, if we pleased, 
be carried further. Not only is there but one species of cone of 
the second order, but, with some limitations, any two curves of 
that order may be regarded as sections of one and the same 

cone. This is not so as regards cubics; for it has been proved 
(Art. 167) that every cubic curve has a certain numerical cha- 
racteristic, expressing the anharmonic ratio of the four tangents 

which can be drawn from any point on the curve, and represented 

by the ratio of the invariants S°: 7 of the biquadratic, which 
determines those tangents. ‘This characteristic being unaltered 

by projection, two curves, for which it is different, cannot be 
cut from the same cone; and the parameter in question may 

be regarded as a characteristic, not only of a cubic curve, but 
also of every cone from which it can be cut. The five 
‘kinds of cone we have enumerated might, therefore, be further 
subdivided at pleasure, according to the values of this parameter, 
Such subdivisions have in fact been made, but it is not thought 
necessary to notice them here. In the last section of this 
chapter, however, the cases S=0, Z'=0 will be discussed; and 
it is now pointed out that these represent families not ail of 
curves but of cones. 
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199. Let us now examine, more minutely than in Art. 39, 
the figure of the cubic represented by the equation considered 
in Art. 196, and it will be convenient to take the origin at 

the middle point of the diameter of the oval, so that the 
equation may be written 

ay’ = (a'— m') (% — 2), 
where z is greater than m. Differentiating, we find that the 
values of « which correspond to maximum values of y, or to 
points where the tangent is parallel to the axis of 2, are given 
by the equation 

. 3x” — 2na—m" =0; whence a=4 {nt /(n* +-3m’*)}. 

If we give the negative value to the radical, we get the value 
of x corresponding to the highest point of the oval, and since 

this is negative, we see that the highest point on the oval 
is on the side remote from the infinite branch, and that the 

oval is therefore not, like the ellipse, symmetrical with regard 

to two axes. This oval is symmetrical with regard to the axis 
of x, and not with regard to the axis of y, but rises more 
steeply on the one side and slopes more gradually on the other. 
The greater 7 is for any given value of m, that is to say, the 
greater in proportion the distance between the oval and the 
infinite part the more nearly does the oval approach to the 
elliptic form; while on the other hand, the difference is greatest 
when the oval closes up to the infinite part, that is to say, 

when the curve is crunodal. In this case the highest point 

of the loop corresponds to the point of trisection of its axis. 
If we give the positive value to the radical, the corre- 
sponding value of x is intermediate between m and n, and the 
corresponding value of y is imaginary. The form of the 
equation shews that the point of contact with the curve of 
the line at infinity is on the line 2=0, unlike the common 

parabola y’= px, which is touched by the line at infinity on 
_y=0. The infinite branches of the cubic, therefore, tend to 
become parallel to the axis of y and not to the axis of a; 
and there must be a finite point of inflexion on each side of 
the diameter where the curve changes from being concave 
to being convex towards the axis of w Hence the name 
* divergent parabola.” 

taht sl 
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The form of the curve is then represented by the oval and 
the right-hand infinite branch on the 

figure. If, however, we have in the 
equation + m’* instead of — m”*, then there 
will be no real oval, and the infinite 

branch will be either of the left-hand 

or right-hand form’ that is to say, there 
will or will not be points for which y is 
a maximum, and at which the tangent is parallel to the axis, 

according as 3m” is less or greater than n*; and there is of 
course the intermediate case 3m*=n", where there is on each 
side of the axis of x a point of inflexion, the tangent at which 
is parallel to this axis. 

The figures of the crunodal, acnodal, and cuspidal forms do 

not seem to require further discussion than was given in Art. 39. 

200. Returning to the case where the curve has an oval, 
it is plain that in general every right line must meet any 

closed figure in an even number of real points, and therefore 
that every line which meets the oval part of the cubic once, 
must meet it once again and not oftener; since when a line 
crosses to the inside of the oval, it must cross it again to come 

out, and cannot meet the oval in four points. Every line, 

therefore, must meet the infinite part of the curve once. It 
follows that no tangent to the curve can meet the oval again, 

and therefore that none of the points of inflexion can lie on 

the oval. It is easy to see, on inspection of the figure, that from 
any point outside the oval two tangents can be drawn to it. 

- Thus, then, the oval is a continuous series of points, from 
none of which can any real tangent, distinct from the tangent 
at the point, be drawn to the curve. The cubic then, which 
includes an oval, is of the class (Art. 167), the four tangents 

from every point of which are either all real or all imaginary. 
The tangents from every point on the oval are all imaginary, 
and from every point on the infinite branch are all real; viz. 

two can be drawn to the oval and two to the infinite branch 
itself. In fact, the tangent at any point on the infinite branch 

must meet that branch again, since the third point in which 
it meets the curve cannot be on the oval. 
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201. What has been just said, may be used to illustrate 
the essential property of unicursal curves (Art. 44). The co- 
ordinates of any point on such a curve can be expressed 

rationally as functions of a parameter, so that by giving to 
this parameter values continuously increasing from negative 

to positive infinity, we obtain all the points of the curve in 
a continuous series, the coordinates being always real. In 

the present example, on the contrary, it is geometrically 
evident that if we commence with any point on the oval and 

proceed on continuously, we return to the point whence 

we set out, without. passing through any point on the in- 
finite branch; and it is algebraically impossible to express 

the coordinates of any point in terms of a parameter without 
including a radical in the expression. For instance, we might 

take z=1, e=0, y=/(a0?+300°+ 38c9+d). We shall then: 

call the curve we have been considering a bipartite curve, as 

consisting of two distinct continuous series of points. 
A curve of the second kind considered, Art. 196, has no 

oval, and is wndpartite, all the real points of the curve being 
included in one continuous series; but the curve is not on 

that account unicursal, for the coordinates of any point cannot 

be rationally expressed in terms of a parameter, and a unipartite 
curve is not necessarily unicursal, just as an equation having 

only one real root is not necessarily a simple equation. A cru- 

nodal cubic, on the other hand, is unicursal and unipartite; all 

the points of the curve succeed each other in a definite order 
forming a single series. The curve may, however, be regarded 

as comprising a loop and an infinite branch consisting of two 
parts separated by the loop. The argument used, Art. 200, 

shews that no point of inflexion can lie on the loop, neither can 
any tangent meet the loop. ‘The loop, therefore, includes a series 

of points from none of which can any real tangent be drawn to 

the curve, while from every other point on the curve, two real 
tangents to it can be drawn, one of them to the loop, the other 

to the infinite branch. So also an acnodal cubic and a cuspidal 
cubic are each of them unicursal and unipartite. 

202. Having thus divided cubics into five genera, we proceed 

to subdivide these genera into species, according to the nature 

mai” 
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of their infinite branches. And, obviously, we must have 
at least four species under each genus, according as the line 
infinity meets the curve, (a) in three real and distinct points, 

(0) in one real and two imaginary points, (c) in one real and 

two coincident points, (d@) in three coincident points. But in 

the case of crunodal, acnodal, and cuspidal cubics, we must 
distinguish under {c) whether the line infinity be properly a 
tangent, or whether it pass through a double point; and in 
the case of crunodal and cuspidal cubics we must distinguish 

under (d) whether the line infinity be a tangent at a point of 

inflexion or at the node or cusp. Further, in the case of 
a bipartite or a crunodal cubic it is important to distinguish: 
under (a) and (c) whether the three points in which infinity 
meets the curve all belong to the infinite branch or whether 

two of them belong: to the oval or loop and only the re- 
maining one to the infinite branch. The differences thence 

resulting in the figures of the curves are so great that the two 
cases may properly be classed as distinct species. ‘These are the 

only differences which are made in what follows, grounds of 
distinction of species. The only other differences which would 
seem to have equal claims to be put on the same level are that 
the points of the curve at infinity may either all be ordinary 
points, or else one or three of them may be points of inflexion. 

But as the changes thus made in the figure of the curves are 
slighter, and as it is desirable not to have more species than can 

be easily remembered, I have preferred to class curves differing 
only in the respect last mentioned, not as distinct species, but as 

different varieties of the same species. It is obviously a good 
deal arbitrary how many varieties of cubics may be counted, 
and much depends on the point of view from which these 

curves are discussed. 

203. The figures for the case where the line infinity is a 

stationary tangent have already been discussed, and the figure 
for any other case may be regarded as a projection of one of 
the figures for this case. Let us commence with bipartite cubics, 

and consider first the projection of the oval. And it will be 
readily understood that if the line projected to infinity do not 

meet the oval, the projection of the oval will remain a closed 
Z 
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curve, while if the line touch the oval, or if it meet it in two 
real points, the projection will have the same kind of rough 
resemblance to a parabola or a hyperbola respectively that the 

oval itself has to an ellipse; that is to say, while the figures 
have not the symmetry of the conic sections, the projection is in 

the former case, like the parabola, a single curve whose branches 

proceed to infinity in a common direction without approaching 
to contact with any finite asymptote, and in the latter case 
consists of a pair of curves having two common asymptotes, and 

lying in two of the vertically opposite angles formed by them. 

Such a pair we shall briefly refer to as a hyperbolic pair, 
It will be observed that an ordinary asymptote to a curve has a 
positive and negative branch at opposite sides of it. The 
theory of projection teaches us to regard the extremities of a 

line at positive and negative infinity as projections of the same 
point, and similarly to regard the branches of a curve which 
touch an asymptote at positive and negative infinity as con- 
tinuous with each other. Thus, then, as when the oval is a closed 
curve, its points form a continuous series, such that commencing 

with any point we can proceed continuously round the curve till 
we return to the point whence we set out; so this is equally true 
of all projections of the oval, and the twin hyperbolic branches are 

to be regarded as forming one continuous-curve, the part where 
one branch touches an asymptote at its positive extremity being 

regarded as continuous with the part where the other branch 
‘ touches the same asymptote at its negative extremity. 

204. Let us next consider the projection of the infinite part 

of the curve (Art. 196) which must be met by every line either 
in one or three real points. First, let the 
line projected to infinity meet it only in one, 
and then the branches of the projected curve, 
instead of spreading out indefinitely, will os 
approach to contact with a finite asymp- 62: 
tote, as in the left-hand curve on the figure. 
The curve, which will hereafter be briefly 
referred to as the serpentine, must obviously 
have three points of inflexion; for it is 
convex towards the asymptote at positive infinity (since every 

per 
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curve is convex towards its tangent on both sides of the point of 
contact) ; it must change this convexity into concavity in order 

to cut the asymptote once again: having cut it, it must bend 
again, else it would continually recede from the asymptote ; 

and it must bend once more in order to become convex towards 

the asymptote at negative infinity. The points in the curve 
represented in the*figure form a continuous series, since it ap- 

pears, from what was said in the last article,-that the branches 

of the curve in contact with the asymptote at its opposite 
extremities are to be regarded as continuous with each other. 

In the above it was assumed that the point at infinity on 
the serpentine is an ordinary point on the curve. If, however, 

it be a point of inflexion, the difference is that instead of the 
positive and negative infinite branches lying as usual on opposite 
sides of the asymptote, they lie on the same side, as in the right- 

hand curve on the figure. It is obvious that the curve has 
then but two finite points of inflexion. We refer to this 
as the conchoidal form. 

205. Next, let the line projected to infinity meet the infinite 

branch in three ordinary points; It may be seen that it will 
always divide the curve into three parts, one of which has no 

points of inflexion, another 
one, and the other two. 
The projection will consist 
of three infinite branches ; 
one, which we shall call a 
simple hyperbola, having 
no point of inflexion, and 
not intersecting its asymp- 
totes; the second, which a 

we shall eall an ¢nflected hy. 
perbola, crossing one asymp- 
tote, and consequently hav- 
ing one point of inflexion; and the last, which we shall call 

a doubly inflected hyperbola crossing both asymptotes, and 
having therefore two inflexions.* No two of these parts form 

* Newton calls the first of these an inscribed, the third a circumscribed, and the 

second an ambigenous hyperbola, 
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a hyperbolic pair, but the three together form a continuous 
series. ‘Thus, in the figure, if we commence by descending 

the vertical branch of the doubly inflected hyperbola, the path, 

after passing through negative infinity on the vertical asymptote, 
is continued from positive infinity on the same asymptote along 

the singly inflected branch, until having passed to infinity on 
the other asymptote it returns along the simple hyperbola, and 

so back to the doubly inflected hyperbola. 
If one of the points at infinity be a point of inflexion, either 

the singly inflected hyperbola becomes simple or the doubly 
inflected becomes singly inflected. If all three inflexions be at 
infinity, the curve consists of three simple hyperbolas. 

Cubics having three hyperbolic branches are called by 

Newton redundant hyperbolas, as having one more than the 
conic sections; those having but one infinite branch, as in 

the last article, are called by him defective hyperbolas; and 

those touched by the line at infinity, and having besides one 

finite asymptote, are called parabolic hyperbolas. 

206. We now enumerate the following species of bipartite 
eubics. (1) The line projected 

to infinity meets the oval twice 
and the other part of the curve 
once. Ifthe last point of meet- 

ing be (a) an ordinary point, 
the curve consists of a serpen- 
tine and a hyperbolic pair, as in + 
the figure. If it be (5) an in- 

flexion, the only difference is, 
that the serpentine is exchanged for the conchoidal form. 

(2) The line infinity meets the curve in three real points, 
none of which belong to the oval. If the points be (a) all 
ordinary points, the figure is that of Art. 205. If one of the 
points be an inflexion, the curve consists either (6) of an oval 
with two simple and one doubly inflected hyperbolas, or else 
(c) of an oval with one simple and two singly inflected hyper- 
bolas. (d) If the three inflexions be at infinity, the curve 
consists of an oval with three simple hyperbolas, In all these 
cases the oval lies within the triangle formed by the asymptotes, 
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and the curves may be further distinguished according as the 
hyperbolas lie in the angles which contain the asymptotic 

triangle, or, as in the figure, in the vertically opposite angles. 
(3) Infinity meets the curve in two imaginary points; and 

we have an oval (a) with a serpentine, or (b) with 
a conchoidal branch (see Art. 204). 

(4) Infinity totiches the oval, which then as- 
sumes the parabolic form, and is accompanied (a) “™, 
with a serpentine, (4) with a conchoidal branch, We 

(5) Infinity touches the other part of the curve. 
The oval then remains a closed figure, while the 

other part of the curve spreads into a parabolic 

form. If (a) the remaining point at infinity be ordinary, one 
branch crosses the asymptote and has two 
inflexions, while the other branch has only 
one. If (0) it be a point of inflexion, the ae 
branches are both at the same side of the 
asymptote, and each has only one in- o 
flexion. zat) 

(6) Infinity meets the curve in three eee: 
coincident points. This is the case with | 
‘which we set out (Art. 199), 

207. We come next to the division of non-singular unipartite 
cubics, and it is evident that we have now nothing corresponding 

to the species 1 and 4 of the last article. We have, therefore, 
only four species of such unipartite cubics, viz. redundant, 
defective, and parabolic hyperbolas, and the divergent parabola ; 

according as the points of the curve at infinity are all real and 
distinct, two imaginary, two coincident, or all three coincident. 
The same varieties of each may be counted as in the last article, 
and the figures of the last article will serve by omission of 
the oval; but for further illustration we give a figure for a 

case where the satellite cuts the sides of the asymptotic triangle, 
and where two critic centres (Art. 192) lie within that 
triangle. We have, then, a portion of the doubly inflected 
hyperbola in a purse-shaped form within that triangle; 

and it is easy to conceive that by a change in the value of 
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the constant the mouth of the purse closes, and we have a 

double point at one of the critic centres, while, by a further 

change, -we have a separate oval, at last shrinking into a 

conjugate point at the other critic centre. 
In like manner 

we have the same y 

four species of ac- 7 

nodal cubics, to- 
gether with a 
fifth, for which the 

acnode is at in- 

finity. The figures 

for bipartite cubics | 

suffice to illustrate a 
this class if we 
suppose the oval 

to shrink into a 

conjugate point. 

The figures for the case where the acnode is at infinity do not 
strikingly differ from those where infinity meets the curve in 

one real and two imaginary points. 

208. Of crunodal cubics we have the following species: 
(1) Infinity cuts the loop in two real points. We have, then, 

two simple and one inflected hyperbola as in the left-hand 
figure. It will be observed by tracing the curve in its 
passages through infinity that the curve is unicursal. There 

are two varieties according, as the remaining point is ordinary 
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or an inflexion. In the latter case, all the hyperbolas are 

simple. 
(2) There are three real points at infinity, none of which 

are on the loop, There are an inscribed, ambigenous, and 

circumscribing hyperbola, the last forming a loop within 
the asymptotic triangle. There are two varieties, according 
as there is, or is ngt, an inflexion at infinity. 

(3) Infinity meets the curve in two imaginary 

points. ‘There are, as before, two varieties. 

(4) Infinity touches the loop, and (5) infinity f 

touches the spreading part of the curve. The ~~ 
figures explain themselves, and in the former case 

there are two varieties, the curve lying all on 

the same side of the asymptote when there is \ 
an inflexion at infinity. 

a we 

There is a double point at infinity, and consequently two 
parallel asymptotes; and the remaining point at infinity is 

(6) on the spreading part, (7) on the loop. In the former 
case, the point of inflexion is outside the parallel asymptotes, 

in the latter, between them. If the inflexion were also at 

infinity,/ the two branches in the former case would lie on 

the same side of the asymptote. 
i 
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(8) Infinity touches at an inflexion, and we have the diver- 

gent parabola of Art. 199. 
(9) Infinity is a tangent at a double Fi 

point, and we have a curve called the 

trident, whose figure is here given. 

209. Of cuspidal cubics there are 
evidently no species answering to 1, 4, 
7 of the last article. The species, then, 
are (1) Three real points at infinity; two varieties. (2) One 
real and two imaginary points at infinity; two varieties. (3) 
Infinity an ordinary tangent; two varieties. (4) The cusp at 

infinity ; two varieties. (5) Infinity, a stationary tangent. (6) 

Infinity, a cuspidal tangent. The figures for the cases 1, 2, 3 

can easily be conceived with the help of the figures of the last 
article, by supposing the loop removed which is dotted in those 

figures, and the double point replaced by a cusp. The figure for 

case 4 is obtained from the left-hand figure (Art. 208) for 
the case of two parallel asymptotes, by imagining those asymp- 

totes united and the branch between them suppressed. We 
have then a single asymptote with two infinite branches on 
opposite sides, but at the same end of it. 
The figure for case 5, the semi-cubical para- Ny 

bola, my’=2",is given, Art. 39. Finally, 

the figure for case 6, the cubical parabola, 5 
my =x", is here represented. 

210. Though we have here counted as many as thirty 
species of cubics, it is not difficult to remember the classification, 

if it is borne in mind that nothing has been done, but combine 
the five-fold division of Art. 196 with the division of Art. 202, 

depending on the nature of the points at infinity. It remains 
to say something as to previous classifications of cubics. The 

first was made by Newton, Enumeratio Linearum tertit ordinis, 
whose classification is substantially the same as that here given, 
except that what we have counted as varieties are made by 
him distinct species; and that whereas in the case of a hyper- 
bolic branch, touched by two asymptotes, we do not regard in 

which of the vertically opposite angles formed by them the 
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branch lies, Newton discriminates the cases where it lies in the 
angle crossed by the third asymptote, or in the opposite angle. 

The cases where three real asymptotes meet in a point are 
treated as distinct species. By attending to these distinctions 
the number of species is made up to seventy-eight. Also, 

whereas we have made the five-fold division primary, and that 

depending on the’ infinite branches secondary, Newton’s course 
of proceeding is the reverse. 

Newton’s method of reducing the general equation is as 

follows: one of the axes being taken parallel to the real 

asymptote, the coefficient say of y’ vanishes, and the equation 
of the curve is of the form 

y (ax +b) +y (fa? + get+h)+ pe+qz' +re+s=0. 

Now the locus of middle points of chords parallel to the asymp- 
tote is obviously 

2axy + 2by + fx’ + gxut+h=0; 

and if we suppose the axes transformed to the asymptotes of 
this hyperbola, the terms ), f, g evidently vanish, shewing that 
the same transformation will bring the equation of the cubic to 
the form 

xy’ +hy=px'+qe+rxt+s, 

or with Newton’s letters 

cy" + ey = ax’ + bx? + ca4+d. 

This is Newton’s most general form. If, however, in the 
equation, as we have written it a and bd vanish, the locus is not 
a hyperbola but a right line, and according as this is (1) 
the line «=0, (2) an arbitrary line which may be taken 
for y = 0, or (3) the line at infinity, the equation of the cubic is 
similarly brought to the forms 

xy =ax’ + bx’ + ca +d, 

y = ax’ + bx’ + cx + d, 

y = ax’ + ba? + cxut+d. 

The only apparently different case is when in the equation, as 
we have written it, a=0, and the locus a parabola; but in this 
case there is another real asymptote, the locus of middle points 
of chords parallel to which is a hyperbola, and the reduction 

AA 
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proceeds as in the first case, only that the coefficient of x* vanishes 
in the transformed equation. Newton’s results are obtained 

from a discussion of these four forms. If y=¢(x) be the 

equation of any curve, Newton calls the curve zy=¢(a) a 
hyperbolism of that curve. Thus then he calls cubics which 

have a double point at infinity, and whose equation can therefore 
be brought to the form 

xy’ + ey =cx+d, 

hyperbolisms of the ellipse, hyperbola, or parabola, since the 
equation just written is brought to that of a conic by writing 
y for xy. 

211. We have already noticed Pliicker’s discussion of cubic 
curves, contained in his System der Analytischen Geometrie. In 
this discussion the nature of the points at infinity is the primary 
ground of classification. Commencing with the case of three 

real asymptotes, when the equation is of the form ayz=ku’v, 

the cases when the asymptotes meet in a point, or form a 

triangle, are first distinguished; then all possible positions of 
the satellite line v are examined; whether for instance it cross 

the triangle, pass through a vertex, or meet all the sides 
produced, whether two critic centres (Art. 192) coincide, and so 

forth. All the curves capable of being represented by the 
above equation for any given position of the lines 2, y, z, v, are 
said to form a group, and by giving all possible values to 4, 

the different species included under the same group are dis- 

tinguished. This will be more readily understood from the 

figure of Pliicker’s first group, which we reproduce on the next 

page, and which answers to the case where the satellite line meets 
the sides produced of the asymptotic triangle, and where we have 

three real critic centres, one inside, two outside the triangle. 

Vig. 1 represents a bipartite curve of the species in this volume 
numbered I., 2. By a change in the value of & the oval shrinks 
into a point, and we have (2) the acnodal curve III.,1. As 

kis further changed, the curve becomes (3) unipartite II., 1; and 
the branches recede further from their asymptotes. In (4) the 
branches cross to the other asymptotes, and the curve becomes 
erunodal, IV., 2. Fig. 5 is bipartite, I.,1. Fig. 6 is in our 

enumeration of the same species as 5, 7 as 4, and 8 as 3, but the 

ie 
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position of the branches with regard to the asymptotic triangle 

is different. Pliicker’s division into groups has been carefully 

re-examined by Prof. Cayley, Zransactions of the Cambridge 

Philosophical Society, 1864, who also gives a comparison of 

Newton’s species with those of Pliicker, of which there are 

two hundred and nineteen. It does not enter into the plan of 

this treatise to give a more minute account of this classifica- 
tion. It will suffice to mention, that in the case of the 

parabolic curves an important part is played by the osculating 

asymptotic parabola, or parabola which passes through five 

consecutive points of the curve where it touches the line infinity. 

The equation of the curve may be brought to the form 

x (y° + 220+ 2") = 2 (ay + bz), 

where obviously the parabola y’+2zx+ 2” meets the curve in 
the point yz reckoned five times. The groups are then deter- 

mined by the position of the osculating parabola with respect 
to the linear asymptote «, and to the satellite line ay + bz. 

SECT. IV.—UNICURSAL CUBICS. 

212. We have seen (Conics, Art. 270) that computation is 
facilitated when the coordinates of a point on a curve can_be 
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expressed in terms of a single parameter, and it has been 

proved (Art. 44) that this is always possible in the case of 
a unicursal curve. Of the application of this principle to cubics 

we now give some examples. ‘The equation of a cuspidal 
cubic can always be reduced to the form 2’z=y’, where xy is 

the cusp, x the cuspidal tangent, and z the stationary tangent. 
Any point on the curve may then be expressed as the inter- 
section of Ox=y, @y=z;* or, in other words, the coordinates 
of any point on the curve may be taken as 1, 0, 6°, where @ is 

a variable parameter. ‘The line joining any two points on the 

curve will then have for its equation, as may be easily verified, 

60' (0+ O)x—(% 4+ 00+ 6") y+2=0. 

Let 6 and 6’ coincide, and we have the equation of the tangent 
202 —30y+2=0. 

If we seek the points where any line az +by+cz=0 meets the 
curve, substituting 1, 0, @ for x, y, 2, we have the equation 

a+b6@+c#°=0, and as this equation in @ wants the second 
term, the sum of its roots vanishes, and we learn that the para- 

meters of three points on a right line are connected by the 

relation 6+6'4+6"=0. Hence, in particular, the tangential 
of the point 6 is—20, and the point of contact of the tangent 
from @ is —40. 

In like manner, if we make the substitution 1, 0, 6 for 
x, Y, 2, in the equation of a curve of the p™ order, the term 
6” * will be wanting in the equation, and the relation connecting 

the parameters of the 3p points of intersection of the curve 
with the cubic is that their sum vanishes. ‘Thus, then, the @ 

of the residual of a system of points is the negative sum, and 
of the coresidual is the sum of the 6’s of the several points; 

and generally the theorems concerning residuation, Art. 158, &c., 
are thus intuitively evident for cuspidal cubics. For instance, 

denoting the parameters of the points by a, b, &c., the condition 
that six points shall lie on a conic is 

at+b+c+d+e+4+ f=), 

* These equations considered as belonging to tangential coordinates give the 

theorem “If J be the inflexion, C'the cusp, and 7 the intersection of tangents at 

; IA? TB 
these points, any tangent AB cuts the sides of the triangle JCT, so that AT27 k Bo’ 

aud when the line at infinity isa tangent 4= 1.” Compare Conics, Art. 327, 
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which at once gives the theorem (Art. 154), that given four 
points on a cubic, the line joining the points e, 7, where any 
conic through them meets the curve again, passes through the 

fixed point (2+ 6+c+d); and that this point may be con- 

structed by joining ad, cd, and joining the points where these 

lines meet the curve again, since 

— (a+b) —(c+d)+ (at+b+ce+d)=0. 

So, again, various constructions for the ninth point where the 

cubic through eight points meets the curve again are obtained 

by inspection of the equation 

(atb+e4+d)+(e+ftigt+h)+7=0. 

213. The parameters of the points whose tangents pass 

through a given point are found by substituting the coordi- 

nates of that point in 26°~—36°y+2=0; and since in the 
resulting cubic the coefficient of @ vanishes, the sum of the 
reciprocals of the roots vanishes; or, three points whose tangents 

: é Pea | 1 1 
meet in a point are connected by the relation atat ger 0. 

In like manner, since the condition that 26°~—3@y+2=0 

should touch a curve of the p™ class is a relation of the p® | 
order between the coefficients 26°, 36°, 1, and since such a 

relation obviously does not contain the term @, it follows that 
the 3p points where tangents touch a curve of the p™ class 

; 1 Mee ‘ 
are connected by the relation = (5) =0. We give some illus- 

trations of this application of the method to examples. 

Ex. 1. To find the locus of the intersection of tangents whose chord of contact 

passes through a fixed point on a cuspidal cubic. 

This is to eliminate « and 8 between the three equations 

2a3e — 8a’y+2= 0, 28x —8B’y+2=0, a+B+y=)9, 

where y is known. We easily find y (2yx + 3y)? + 2az = 0, the equation of a conic. 

Ex. 2. If a polygon of an even number of sides be inscribed in a cubic, and all 

the sides but one pass through fixed points on the curve, the last side will also pass 

through a fixed point on the curve. 

Denote the parameters of the vertices by a), a, &c., and of the fixed points by 

b,, b,, &c. We take the case of the quadrilateral for simplicity, but the proof 

is general. We have then the equations 

a,+6,+a,=90, a,+6,+a;=9, 

ag+0;+a4=0, a +h+y=0 | 
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Adding, we have 4, + 5, = 6, + d,, shewing that the lines joining ,, 3,; 5,, 6, meet on 

the curve, and that, when three of the points are known, the fourth is known also: 

The theorem is true for all cubics, for the proof here given may easily be translated 

into the language of the theory of residuation, shewing that the pairs of points 0,, 3, ; 

5,, 6, are coresidual, a common residual being the system of vertices a), dz, @3, A. 

It follows, as a particular case of this theorem, that if the sides of a polygon of an 

odd number of sides pass through fixed points on the curve, the tangent at any 

vertex passes through a fixed point on the curve; and hence, that the problem to 

construct such a polygon whose sides pass through fixed points on a non-singular 

cubic admits of four solutions. 

Ex. 3. To find the quasi-evolute, the two fixed points being on the curve (see also 

Ex. 5, Art. 99). The equation of the quasi-normal (Art. 107) is 

(6? + BO — 267) {0a (0+ a) w — (0 + Oa + a?) y+ 2} 

+ (a? + af — 26°) {08 (0+ B) x — (6? + 68 + B?) y+ 2} =0. 

= Bh. 

1-2 

Art. 108, a biquadratic in A, in which the two extreme terms at each end respectively 

differ only by a constant factor, and the discriminant, having as factors the equations 
4th 

If we transform this by writing 6@= , we get then. in conformity with 

of the tangents at a and £, represents besides a curve only of the degree. 

214, It remains to mention a few of the more remarkable 
examples of cubics of the third class. We have already noticed 
the semi-cubical parabola, which is the evolute of the parabola 

of the second degree. In its equation, py*=2"*, the cusp is at 
the origin, and the point of inflexion at infinity. In the cubical 
parabola, on the other hand, p*°y=2*, the point of inflexion 
is at the origin and the cusp at infinity. In the cubical para- 

bola the origin is a centre, and all the diameters of the curve 
coincide with the axis of y; for if we draw any line y= mx +n, 
the sum of the values of x is=0. 

To the cusped class also belongs the Cissoid of Diocles, a 

curve imagined by that geometer for the solu- 3 
tion of the problem of finding two mean pro- J 4 

portionals. It may be defined as the locus of 

a point JJ', where the radius vector to the Pe f 

circle AM is cut by an ordinate, such that Reg | 
AP'=BP, We must have Be 

AM'= KM, and therefore p= AR- AM, 

or p=2r secw — 2r cosw=2r tan sing; 

or, in rectangular coordinates, 

a(x" + y") =2ry’, or (2r.— 2).y" = 2, 
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The origin is therefore a cusp, and 27 — x an asymptote meeting 
the curve at an infinitely distant point of inflexion. 

Newton has given the following elegant construction for the 
description of this curve by continuous 
motion: A right angle has the side G/’ 
of fixed length, the point / moves along r 
the fixed line OJ, while the side GH 
passes through the fixed point H; a # er f 
pencil at the middle pointof GF will B Sf cP 

describe the cissoid. ‘The proof we leave G 

to the reader. (Lardner’s Algebraic Geometry, pp. 196, 472). 
The cissoid is also the locus which we should find if we take 

on each of the radii vectores from the vertex of a parabola a 

portion equal to the reciprocal of its length. It is consequently 

also the locus of the foot of a perpendicular let fall from the 

vertex of a parabola on the tangent; or, in other words, if a 

parabola roll on an equal one, the locus of the vertex of the 

moving parabola will be the cissoid. 

I 

215. We can in like manner express in terms of a single 

parameter the coordinates of any point on a crunodal or acnodal 
cubic. The double point being the origin, the equation is of 

the form 

ax’ + 3ba*y + 3cxy’ + dy’ + 3fx? + gay + 3hy’ =0, 

and if we put y = @x, we have immediately rational expressions 
for x and y interms of @. ‘The discussion will, however, be 
simpler if we suppose the equation transformed, as it always 

may be, tothe form (a*+¥*)z=a". Here z is the tangent at 

the one real point of inflexion which the curve must have: 
x is the line joining the point of inflexion to the double point, 

and x+y" are the tangents at the double point, the upper sign 

belonging to the case of the acnodal, and the lower to that of 
the crunodal cubic. ‘The coordinates then of any point on the 
curve may be taken proportional to (1+ 6), 6(1+6°), 1. If 

we substitute these values in the equation of an arbitrary 
line Ax + py +vz=0, we get, in order to determine the para- 
meters of the points where this line meets the cubic, 

(A+) + wO+rO? + wh =0, 
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and these parameters are connected by the relation 
6'6" a: 6’ Ee" a 0" @' ops + PE 

If the line touch at a point of inflexion 6’= 0" = 6", and there- 
fore 6 =+4. Hence, an acnodal cubic has three real points of 
inflexion, and a crunodal cubic one real and two imaginary. 

The equation of the line joining two points will be found 
to be 

(P+ 00' + O° +1) a— (04 6) y=+(14+) (14 0”) 2, 

and therefore the equation of a tangent is 

(30°41) x— 20y=4 (14 0’)%z, 

whence we see that if four tangents meet in a point, the sum of 
the corresponding parameters vanishes, and if two of the points 

be given, we can at once form the quadratic which determines 

the parameters of the other two. There is no difficulty in 
applying this method to examples. 

At Art. 122, Ex. 1 we have noticed the crunodal cubic, whose 

polar equation is p* cos4@=m*, and whose rectangular equation 

is 27 (a+ y")m=(4m-—<a)*; a curve having three points of 

inflexion at infinity, oue real and the others being the two 

circular points. The node is on the axis of z at the point a= —8m. 

216. When a nodal cubic has three real points of inflexion, the 

conjugate point ts the pole of the line joining these three points, 
with regard to the triangle formed by the three tangents. Let 
the equation of a cubic be 

(e¢+y+z2)°=mryz; 

then, if this has a double point, its coordinates must satisfy the 
equations got by differentiation, viz. 

3(a@+y +2)? = myz=mzx = mexy. 

From these equations we get «= y =z, which (Art. 165) proves 
the theorem enunciated, and we then have for the nodal cubic 

m= 27, and the equation of the curve may be written in the form 

a + y" +25=0. 

In this case the coordinates of any point on the curve may be 
taken proportional to 6°, (1—@)*,—1, and the equation of the 
corresponding tangent is (1 — 0)’*a + @y+ @(1—@)*2=0. 

sue 

P Pre re! 

ont Ade Ne GR fre ee 
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216(a). The subject of unicursal cubics may be otherwise 

treated.* We may start with the most general expression for 

the coordinates in terms of a parameter : p, Viz. 

w=a +3) wt 3c Awd p, 

y=a' > + 3b’ Nw+ 8c Ap? +d’ p’, 

2 =a" + 80" + 8c"Aw? + dp, 
and we can at once (as in Art. 44) write down in the form of a 
determinant the equation of the resulting cubic. But agam, 

there are in general three linear functions of x, y, %, whose 
expressions in A, mu are perfect cubes. For if in the equation 

La + My + Nz =(or+ By)’, ? 

we substitute for 2, y, 2 their expressions in X: p, equate 
coefficients of X°, A*w, &e. and linearly eliminate LZ, M, N from 
the resulting equations, we get 

8 ’ ” a, a, a,a 

GAR Foor 

ay; Ge, 

8°, d, d, d" \=0; 

that is to say, we have a cubic for the determination of a: P, 

which we may write 

Aa’ + 3Ba'B + 3Cap’ + De’ =0, 

A, 3B, 3C, D being the determinants of the system 

fee Oy Oa 

a are 

Corresponding to the three values of a: 8, there are three . 

values of Le+My+Nz; and if, writing down the three 
equations 

L'x + M'y + N'2=(ar+4 f'n)’, &e., 

we take the cube roots of both sides, and linearly eliminate 2: p, 

we get the equation of the curve in the form of a linear relation 

* For further developments of the method here explained see Igel, Math. 
Annal., VI, 633; Haase, Math, Annal, 11, 526, 

BB 
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between the cube roots of three linear functions. ‘This is 

expressed in the simplest form by writing 

X= (a! 046" w)*(a"B"— a"), 
Y= (a+ 8" u)* (a"B’ -al B")', 
Z=(a"0+8"n) (a B" — a" BY’ 

when we have the equation of the curve in the form (Art. 216) 
Xi+4 Y4!+4Z4=0, which denotes a nodal cubic, X, Y, Z being 
the three inflexional tangents, X¥+ Y+Z the line joining the 
three inflexions, and X= Y=Z the node. 

216 (4). We might arrive by another process at a cubic 
identical with the Canonizant cubic of the last article. The 

general condition that three points should be on a right line 
being got by equating to zero the determinant formed with 

the constituents 2’, y’, 2’, &c., if we substitute for a2’, av*+ &e., 
we get the condition that three points of the curve should be 
on aright line. This is easily seen to be resolvable into partial 
determinants, each of which is divisible by 

(Vip” ae rp’) (A ” Dae Nps) haar ce rip’) ; 

and the condition in question may be written 
Ap'p'p + BN pp 4 a . je pe’) 

of CO Ow =e p Nae Wa af 4 Vr”) + DBE ase 0, 

where A, B, &c., have the same meaning as in the last article. 
In other words, if the \: w of three points be determined by the 
cubic 

A'S + 3B’ 4+ 30D? + Dip? =0, 
then the condition that these three points should be on a right 
line is 

(AD'— A'D) -—3(BC’- B’'C)=0. 

The 2: w of a point of inflexion we get by writing V’=A"=A", 
=p" =p" in the preceding equation, and we thus fall back 

on the cubic 

Ap’ + 3Brp’ + 30Nu+ Dr? =0. 

We might arrive at the same cubic in a somewhat different 
form. From the general determinant form of the equation of 
the line joining two points, it follows that for a unicursal cubic, 
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in which we are given expressions for x, y, 2 in terms of a 
parameter, the equation of the tangent at any point is 

as a os 

nat) Yn oN 

Gy FF Mf = 0, 

where the suffixes denote differentiation with regard to » or uw 

of the expressions for x, y, or 2; and, in like manner, that the 
condition that three consecutive points shall lie on a right 
line is 

wy Dy 

uw? Dru 7 ry 

“iu? Yuu "up | = 0. 

Thus, then, for the case of the cubic which we are con- 

sidering, the A : wu of the inflexions is given by the equation 

arxtbp, brA+cp, crA+d pw 

arX+0'p, UrA+c p, CA+d' pw 
an +b"p, bX +“, oN +d" =0, 

which may be seen (as Higher Algebra, Art. sce to be identical 
with the cubic already mentioned. 

216 (c). A node on the curve will. arise when the same 
point answers to two different values of the ratio X:p. If 
v3 w’, X’: w” be two values answering to the same point, then, 

no matter what other point \”: yw” we take on the curve, the 
condition of the last article (that it shall be on a right line with 
the two coincident points of the node) must be fulfilled. ‘Thus, 

equating separately to zero the parts in that condition multiplied 

by '”, »’” respectively, we have 
App " + B(vp" +2" p') 4 On’ Mt te aS 0, 

Bu'w " re O(N pe" +: rw’) ni Dr ty, — 0, 

and since, from the theory of equations, if the two values of 
X:, corresponding to the node be given by a quadratic 
equation, that equation must be 

Vp" ie Ap (V'p” ~f. rp’) 4 wr nr’ pen 0 : 
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eliminating p'u”’, &e., we get the quadratic, which determines 

the values of the nodal parameter 
dr’, —Vp, ue 

Ay a 
By. 55.27 158, 

In other words (see Higher Algebra, Art. 195), the quadratic 
which determines the two values of the nodal parameter is 
the Hessian of the canonizant cubic. 

If in the condition of the last article we write \": wp" =A: pw, 
we get the relations connecting the parameter of any point with 

that of its tangential, and it will be observed that the factors 

multiplying 2’, w'” are the differentials of the cubic with 

regard to A, mW. 

- 216(d). In the preceding it has been assumed that the roots 
of the canonizant cubic are unequal. ‘To consider in the 
simplest form the case where- there are two equal roots let 
x and y be two of the linear functions, which, expressed in terms 

of the parameter, are perfect cubes; that is to say, let us 
take v=D*, y=’, and if z=a"\? + 3b" 4 8c'Ap’? + dy’, the 

canonizant cubic becomes af (b"8 —c"a)=0, which will have 

two equal roots only, on the supposition that 6” or c’=0. In 
this case we can, by linear transformation, bring the third 

equation to the form z=", and the cubic will be z’=2’y; or, 

in other words, it will have a cusp. Clebsch has shown 
(Crelle, Lxty. 43), that in general the equation of the 3 (n—2) 
degree, which determines the parameters of the points of in- 

flexion, will have a pair of equal roots for every double point 
which becomes a cusp. 

If the canonizant have three equal roots, the curve breaks 
up into a right line and a conic. 

SECT. V.—INVARIANTS AND COVARIANTS OF CUBICS. 

217. The equation of a non-singular cubic can always be 
reduced to the canonical form 

ety +2°+6mryz=0. 

In this form x, y, 2 contain each implicitly three constants; 

and these, together with the one expressed constant, make up 

Be RR er ye ee ay RN Ep Tt yh 

cpg saat 
frye 



ten, the number of constants, which, according to the test of 
Art. 24, a-form must contain if it be general enough to represent 
any cubic. We shall presently shew how the equation of any 

cubic can be reduced to the form just given. We may write it 

(e+y —2mz) (wx + wy —2mz) (w*w + wy — 2mz) + (1+ 8m") 2’=0, 

where is an imaginary cube root of unity. In this form it 
is apparent that the line z joins three points of inflexion, and 

the’same thing is proved in like manner for the lines @ and y. 
Hence these three lines constitute one of the four systems of 
three lines which we saw (Art. 174) can be drawn through 

the nine points of inflexion; and we can foresee that the 
problem to reduce the equation of any cubic to the canonical 

form admits of four solutions. 
The form here given is that which we shall generally use 

in our investigation concerning cubics; but it is necessary 
first to obtain the invariants for the equation in its general 
form, which we write ; 

%aa? + by’ + cz’ + 8a,0°y + 30,02 + 3b,y"a + 3b,y°2 
+ 3¢,2°x + 3¢,2°y + 6mxyz =0. 

218. We form now first the equation of the Hessian. The 

second differential coefficients of the cubic, omitting the factor 

6 common to all, are 

a=anrt+a,y+a,2; f=me+b,y +625 

b=baet by +b,23 g=ae+myt+czZ;3 

oe oytce; h=aar+by+me. 

* In Prof. Cayley’s Memoirs the coefficients of the terms yz, 2?x, xy, yz*, za, xy”, 

are written respectively f, g, h, 7, 7, & In German Memoirs the variables are 

usually denoted by xj, 2, x3, and the coefficients in question are written 93, 4331, @12) 

@o33) M311) Ayo. The first notation has greatly the advantage in compactness; the 

advantage of the second is that each coefficient shews on the face of it to which 

term it belongs. In formule which we have much occasion to work with, the use 

of suffixes is less convenient than a notation in which each coefficient is denoted by 

a single character; but since the general equation of the cubic. is only used in the 

articles immediately following, and there chiefly for purposes of reference, I have 

thought the second advantage to be that which in this instance it was most important 

to secure. The notation used in the text agrees with the German, replacing a1, yo, 

a3 by a, 5, ¢, respectively. On the same principle the coefficients of 2%, y°, 2°, might 

be written yy b,, Cz, and were so written in the first edition. I now omit {he 

suffixes in the case of these three coefficients, not only for brevity but also to 

diminish the risk of confounding any of them with one of the group of six coefficients, 

INVARIANTS AND COVARIANTS OF CUBICS. | 189° 
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Forming then H=abe+ 2fgh —af* —bg’ — ch’, 

HZ is the cubic, the coefficients of which are respectively 

a =ab,c,— am’ + 2ma,a, — b,a,' —¢,a,", 

b = ba,c, —bm* + 2mb,b, — a,b,’ —¢,8,”, 
2 ee mes 2 ie ge ec =ca,b, — cm + 2mc,c, —a,c, —b,¢,’, 

3a, = abc, — 2amb, + ab,c, — ba,’ + m’a, — b,c,a, + 2a,a,b, — ¢,0,", 

3a, = ach, — 2ame, + ab,c, — ca,’ + m’a, — b,c,a, + 2a,a,¢, — b,0,"5 113 2°3°2 3°39 

3b, = bac, — 2bma, + ba,c, — ab,’ + m*b, — c,a,b, + 2b,b,a, — ¢,0,", 

3b, = bea, — 2bme, + ba,c, — cb? + mb, — ¢,a,b, + 2b,b,c, — a,b,’ 

3c, = cab, — 2cma, + ca,b, — ac,’ + m*c, — a,b,c 2 
3 aC, + 2¢,¢,a, — b,c 74-2 

3c, = cba, —2cmb, + ca,b, — bc,’ + mc, — a,b,c, + 2¢,¢,b, — A655 

6m = abe — (ab,c, + be,a,+ ca,b,) + 2m* — 2m (b,c, + 6,4, + a,),) 

+ 8 (a,b,c, + a,b,¢,). 

As a particular case of the preceding, the Hessian of 

ety t+2°+6mayz=0 is — m (w+ 4° +2°) + (14+2m’) cyz=00 

219. We are also able to form the equation of the Cay- 
leyan. ‘This contravariant expresses the condition that the line 
ax + By +-yz shall be cut in involution by the system of conics 

U,, Uy Uy, where 

U,=ax'+by* +¢,2" + Qmyz + 2a,2u + 2a,xy, 

U, =a, +b y' +0,2° + 2b,yz + 2mezx + 2d. cy, 

U, =a," + by’ +.¢ 2’ + 2c, yz + 2¢,2x + 2may. 

The method of forming this contravariant is given, Conies, 
Art. 388a; and the result is there found in terms of the coeffi- 
cients of the three conics. Applying the formule to the present 
example, we find 

P= Ao? + BB’ + Oy +34,0°B +3.4,0°y + 3B. 6a + 3B,B*y 
+3C,7'a+ 30,78 + 6MaBy, 

where 

A =bem — be,c, — cb,b, — mb,c, + b,c," + ¢,b," ’ 1°32 
as 2 2 B= cam — ca, — aC,Cc, — MAC, + 4,0, + CAs 

C=abm — ab,b, — ba,a, — mb,a, + 6,0," + 4,0,', ene 

- ; beat 
fia! i yy sega sa is ties Se ae 

See Shes 

Pee Nae 
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3A,=—bca,—cmb,+ be,?+2ca,b,+2m’c,—3mb,c, +¢,a,),+0,¢,0, —24,C,", 

3A ,=—dca,—bme,+cb,"+2ba,c,+2m"b,—3me,b, +b,4,¢,+ b.c,b,—2a,),, 

3B, =— cab,—cma,+ac,"+2ca,b,+2m’c, —3ma,c,+¢,d,),+4,6,¢,—25,¢," 
ins: 3 2°1°2 at EI 

3B,=—cab,—ame,+ca,’+2ab,c,+2m'*a,—3me,a,+a,b,¢,+4,¢,4,—20,a,°, 

3 C\=— abce,—bma,+ab,’+2ba,c,+2m'b,—3ma,b,+b,4,¢,+4,),b,—2¢,b,", 

3 C= —abe,—amb,+ba,’+2ab,c,+2m'a,—3ma,b,+a,0,c,+4,a,),—2¢,0,'5 

6M= abe — (ab,c, + bc,a, + ca,b,) — 4m* + 4m (b,c, + ¢,a, + 4,),) 

— 3 (a,b,c, + a,0,¢,). 

In particular, the Cayleyan of x’ + y°+ 2° + 6mayz is 

m(a°+ 6° +y°*) + (1—4m’*) aBy =0. 

220. If in the contravariant just found we substitute for 
a, 8, y, symbols of differentiation with respect to x, y, 2 respec- 
tively, and then operate on the given cubic JU, the result will 
be an invariant (Higher Algebra, Art. 139). 

This invariant, which we denote by 8, is of the fourth degree 
in the coefficients, and is 

S = abem — (bca,a, + cab,b, + abe,c,) — m (ab,c, + bc,a, + ca,b,) 

+(ab,c,’+ac,b,'+ba,c,’+be,a,’+cb,a,'+ca,b,)—m'*+2m*(b,c,+¢,a,+4,),) 

—3m(a,b,c,+a,b,¢,)—(0,"c7+¢,°a,?+a,"b,”)-+(c,a,4,b,+4,0,0,¢,+5,¢,¢,0,)- 
22°38 Se Be tm ae 

It amounts to the same thing to say that the equation of the 
Cayleyan may be written 

a ee d d d 3 baad > ited — bo 

(« besa hh Oa. AV a he tas, 
pe UR ar ON 

+ Bas toes. +98 7, +081 7,) S=0. 

We have explained, Higher Algebra, Art. 162, the symbolical 
method by which Aronhold originally obtained this invariant 
S; its symbolical notation being (123) (234) (341) (412), that of 
its evectant, the Cayleyan, being (123) (#23) (a31) (412). For 

the canonical form § is m—m*, and since S vanishes when 
m=0; that is to say, when the equation is of the form 

a+ y°+ 2°=0, it follows that S vanishes when the cubic function 
equated to zero can be reduced to the sum of three cubes. 
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221. When we have a quantic U= ax" + by" +z" + &e., and 
a covariant V of the same degree ax” + by” +cz"+ &e., then if 

we have any invariant of U, and if we form the corresponding ~ 

invariant of U+2XV, the coefficients of the several powers of 

a i 
k| 

. 

& 

= 

» will obviously be invariants. We learn hence that, in the © 
case supposed, from any invariant of U we can form a new in- | 

: : ; ‘ d d d 
variant by performing on it the operation a Ags b tea &e. 

Applying this principle to the cubic and its Hessian we can 
from the invariant S derive a new invariant 7’ of the sixth order 

in the coefficients; or, what amounts to the same thing, we can — 
obtain 7’ by writing differential symbols for a, 8, y in the 

Cayleyan, and then operating on the Hessian. We thus find © 

for JT the value 

alc’ —6abc(ab,c, + be,a,+ca,b,) —20abem*+ 12abem (b,c,+ ¢,a,+ a,),) 

+ 6abe(a,p,c, +a,b,c,)+-4 (a’be,+ a’cb,'+ b'ca,’+ bac,’ + Cab?+ cba’ 273% 1 5956, 

+ 36m’ (bea,a, + cab,b, + abc,c,) 

— 24m (beb,a,' + bee,a,” + cac,b,’ + caa,b,” + aba,c,’ + abb,c,”) 

— 3 (a’b,*c,"+ B'c7a,"+ €a,"b,") + 18 (bcb,c,a,4a,+ cac,a.b.b.--aba,b.c.c ) Pare ss 22°31 33-48 

— 12 (bec, a,a,* + bcb,a,a,° + cac,b,b,? + caa,b,b,’ + aba,c,c,’ + abb,c,c,”) 2 372 17371 37178 271% 1°21 

— 12m’* (ab,c, + bc,a, + ca,b,) 

+ 12m’ (ab,c,? + ac,b,? + ba,c,” + be,a,2 + cb,a,? + ca,b,2) 

— 60m (ab,6,c,c, + bc,c,a,a, + ca,a,b,5,) 

+ 12m (aa,b,c,° + aa,¢,b, + 6b,c,a,' + bb,a,¢,’ + cc,a,b,” + cc,b,a,”) 
2°3 3 8438 

+ 6 (ab,c, + bc,a, + ca,b,) (a,b,c, + @,0,¢,) 
23.1 3°43 

+ 24 (ab b oy + acc b, + be.6,'Ay i baa, C ; + ca,a *b ? + cb,b,’a,) tS A 12 2 ‘8.2 “2B 

— 12 (aa,),c,° + aa,c,b,’ + bb,c,a,' + bb,a,¢," + cc,a,b,° + cc,b,a,°) 
. 

— 8m° + 24m* (b,c, + ¢,a, + a,b,) — 36m’* (a,b,c, + a,b,c.) 
2°31 3°1°2 

— 12m? (b,¢,¢,a, + C440, + a,,6,¢,) — 24m? (b,*c,* + c,"a,” + a,b,”) 
> bt bat aed 2.28 Ss 

e 36m (a,0,¢, Bs a,b,c, (d,¢, az C0, + ap.) 2% 8 (2,°c,° C, a," 7 a °b ny 8 ~s/ 

27 22% 27 2.2 — 27 (a,'b,’c," + a,b, c, ) — 6b,c,c,a,a,, 

27.2 
Ly ee 1 i? 628 2°°3°3 2° 2 Sao aad, Pack bog 3 Og Cys) s — 12 (b,7c,7c,a,+ b,7¢,°a,b,+ ¢,7a,/a,),4+ ¢,°a,°b,c,+.a,b,'b,c, +a 

Be a a pie oi 
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For the canonical form this invariant reduces to 1 —20m*— 8m’. 
Its symbolical form is (123) (124) (235) (316) (456), We can 

; eee dT 
derive from the invariant 7’ an evectant a ae + p° Fi + &. =0, 

the coefficients of which it is needless to write at length. Tor 
the canonical form, this contravariant, which we denote by Q, is 

(1 — 10m*)'(a° + 6° + 4°) — (30m? + 24m") aby =0. 
Every invariant of the cubic can be expressed as a rational 
function of Sand 7. ‘This can be proved in the same way as 
the corresponding theorem is proved (Higher Algebra, Art. 215) 

for a binary quartic, there being much resemblance between 

the theory of the binary quartic and that of the ternary cubic. 

222. The method of finding the equation of the reciprocal of 
a cubic has been explained (Arts. 91, 188). We give the result 
for the general equation, only writing at length, however, those 
terms the form of which is really distinct. The other coefficients 

may be obtained from those we give by symmetrical inter- 
change of letters. 

a’ {b’c’ — 6beb,c, + 4be,° + 4cb,° — 3b,"c,"}, 

6a’B {—be’b, + 2beme, + beb,c, — 4meb,” + 3cc,b,b, — 2be,c,” 
Pe ae | 

+ 2mb,c,’ + b,’c,c, —- 2b,c,"}, 

3a‘ B? {2be’a, — 4mbec, + 3c°b,’ — 2bec,a, + 16m*cb, — 12meb,c, 

+ 4be,"c,+ 4ca,b,” — 6ca,b,c, — 6cb,b,c, — 4c," — 8mb,c,c, 

— b,%¢," — 2a,b,c," + 4a,c,° + 128,¢,c,"}, 
a 3:9 1712 

bai By {be e Am’ + 5b,¢, Bre 2a,b, r
ag 2c,a,) 23 b (2me,c, a 4a,C," "Hs 30,

c,’) 

4 ; (2mb,b, + 4,5," Ls 3¢,b,") ee 8°b,c, Se 10m (b,°c, a2 c, 0.) 

— 2a,c,b,* — 2a,b,c,” — 11b,5,c,c,}, 3°2°8 2°32 1-312 

20° 8° {— abc’ — 9c’a,b, + 3bec,a, + 3ach,c, — 2ac,’ — 2be,* — 16cm* 

+ cm (18b,c,+ 18¢,a, —24a,5,) + 9c (a,b,c, + a,b,c,) +12m’c,c, 2°31 3°12 

+ 6m (a,c,' + 0,¢,") + 6a,b,¢,c, — 18b,c,"c, — 18a,¢,¢,” 
8-1-2 5 31% }) 

6a°B’y fabcc, + 6bema, — 4bea,c, — 2acb,’ + ab,c,” + 2mbe,* — 5be,c,a 
1°23 

+ 4em*b, — 10ema,b, + 2cb,a,b, — 6cb,’c, + 9ca,c,b, + 8n’c, 
1°33 2 2.3 

— 16m’*b,c, + 12ma,),c, 

+ 10b,0,c,7 + 18a,,c,c, — 11a,),¢,"}, 1°31 a ot 2 3°12 

2 2 — 8ma,c,' — 2mb,c,c, — 4a,b,¢, 

CC 
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6a" B’ry* {— 4abem + (bea,a, + cab,b,tabe,c, —8m(ab,c, + be,a,+ca,,) 

+ 5 (ab,c," + ac,b,” + bea, + ba,c,? + cba,’ + ca,b,”) 

— 8m‘ + 4m” (b,c, + ca, + a,>,) + 18m (a,b,c, + a,b,c.) 

+4 (b,7¢," + ¢,"a,’ + a,'b,”) — 19 (b,¢,c,a,+ ¢,a,a,0, + a,b,0,¢,)}. 

The contravariant just formed is the second evectant of 7’; that 
is to say, the equation of the reciprocal may be written 

d d d d d d Ue xe es Pak Se eet ee | Re ors 

(« Steg Ma ae ee a 
2 d 2 d 2 d ad 2 ad + Bag +a g-+ 8 7, +287 Z,) Tat 

It has been mentioned, Art. 91, that the equation for the 
canonical form is 
o? eis (2 + 32m*) (B'y? + roe + a’ 3°) 

— 24m*aBy (a + B° + 4°) — (24m + 48m") 0?B*y? = 0. 

223. The invariants of a cubic may also be calculated by 
means of the differential equations which invariants must satisfy 

(Higher Algebra, Art. 143). For this purpose it is convenient 
to arrange the equation according to one of the variables, and 
to write it 

re +3 (av+a,y) 2 + 3 (b2* + 2b. xy + b,y’)z 

+ (c,x° + 8¢,2°y + 3c,cy" + ¢,y*) = 0. 

If we desire then to form an invariant of any given order and 

weight, the literal part may be written down without calculation. 
For instance, we can foresee that S is of the form 

r (cb) + (c’a’) + (eb"a) + (0°), 

where by (c’b) we mean a function of the second degree in the 
c, and of the first in the 6 coefficients; and we know also that 
it must be an invariant of that order of b,x°+ &c., ¢2°+ Ke., 
considered as a binary quadratic and cubic. ‘The theory, there- 
fore, of binary quantics enables us to foresee the form of this 
term. Similarly for the others. And the invariant must 
further satisfy the differential equation 

at (24, 5 +a, 7) + (30, 5 +2, i +b ) =0. 2 de, 

jie: as i AS at Shel aaah 
ett ee mle on rer hs 
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In this way we find S to be 

— 1 (c*b) + (c’a*) + (cb’a) — (0°)’, 

where (c’d) = (c,c, — ¢,*) b, — (c,C, — ¢,0,) 8, + (¢,0, — C2) 9 

(c?a*) = (c,c, — ©,°) a,” — (6,0, — Cy) 44% + (C10, — ©) A 9 

(cb*a) = a,¢,0," — (c,a, + 3¢,a,) 6,5, + (a,c, + a,c,) (2b," + b,b,) 

; — (a,c, + 8a,c,) 6,5, +.4,¢,," 1°8°0) 

(8°) =b,5, — 8,” 

In like manner 7’ is 

r” (ct) —6r (cba) +4 (c'a®) + 4r (0°) — 3 (c°b°a") — 12 (0°) (cb’a) +8(0*)", 

where (c*) =0,%c,’ + 4,0," + 4¢,¢,” — 8¢,’c,” — 6¢,¢,0,C,, 

(c*ba) = a,b, (¢,c, + 2¢, — 3¢,¢,¢, 

+ (a,b, + 2a,0,) (2c,¢," — ¢,¢," — ¢,0,C,) 

+ (a,b, + 2a,),) (2¢,¢," — ¢,¢," — ¢,¢,¢,) 

+ a,b, (c,¢,' + 2c,” — 3¢,¢,¢,) 

(c'a®) =a,’ (¢,0,' + 2¢,” — 3¢,¢,¢,) 
2 ¢ 2 2 + 3a,7a, (2¢,¢," — ¢,¢,' — 6,C,C,) 

2 2 2 

— 34,4, (2c,¢, es ag oe C,C,¢,) 
3 ,2 ae 

+4, (c,c, + 2¢,° —3c,¢,¢,), 

(c°b°) —8 (0°) (c°b) = 0,7b,’ — 6c,c,b,5,” + 6c,¢,b, (26," — b,8,) 
@:i° 1:3 0°22 

+ ¢,C, (65,0,5, — 8b,°) + 9¢,°b,b," — 18¢,c,b,b,b 
0-12 a: &.2°.0:-25:2 

+ 6¢,¢,b, (20, — b,b,) + 9¢,"b,"b, —6¢,¢,0,5,"+¢, b,° e649 2°8°170 8 °0? 

(c'b¥a") = ¢,"b,"a," — 2¢,¢, (b,"a,4, + 26,5,a,’) 
gt gene} Ls Fe SG 

— 26,0, (b,b,a,2 + 2b,a,? — 100,,a,a, + 4b2a,") 
0-2 02 1 be a 2 

+ 2¢,c, (40,0,a,° + 4b,0,4,° — 60,"a,a, — 30,b,a,,) 
0:,2>-4 I-20 Poet Bas | 0°2°0 1 

+ ¢,” (8b,7a," + 90,"a,' — 12b,b,a,a, + 40,5,2,") 
Ro en ee 6° 2°1 

+ 2c,¢, (b,b,a,4, + 2b,*a,a, — 60,),a," — 6b,b,a," 
02°01 £2 ek 1°2°0 2,4, ) 

— 2c,c, (b,b,4,° + 2b,%a,* — 10b,b,a,a, + 4,74," 
02:0 i ee 

+0, (8b,"a," + 9b,'a,’ — 12b,b,a,a, + 40,b,a,”) 
bk OO" 4 o-2° 0 

: = ne 20,0, (b,"a,%, + 2b,),a, ) + al a Pa 

or, we may write, 

(c°b°a”) = (cba)* + 4 (c°a*) (b*) —8 (c’b) (a*d), 

where (cba) met C040, ae C, (2,0, + 2a,),) oe G, (4,0, a3 2a,6,) ss C,2,0, 

(ab) = ba," — 2b,a,a, + 0,0’. jad ak 
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224. Ifthe curve have a double point, this point may be made 
the origin; when we shall have 7, a,, a, all =0; S reduces to 

— (6°)’ and 7'to 8 (d*)*; or, in the notation of Art. 217, S reduces to 
— (a,b, —m*)* and T’to 8 (a,b, —m*)*.Wesee then that 7” + 648° 
vanishes when the curve has a double point. This, therefore, is 

the discriminant, as will afterwards be proved in other ways. 
If the curve have a cusp (4”) vanishes, and therefore so do 
both S and 7. For the canonical form, the discriminant 
T” + 648° = (1 + 8m’)’. 

225. In the articles next following we use the canonical 

form. It has been proved, Art. 218, that the equation of the 
Hessian of w+y°+2°+6mxyz=0 is of the same form with 
a different value of m, and hence that the system of three lines 

' ayz passes through the intersection of the curve and its Hessian, 

as was otherwise shown, Art. 217. It appears also that the 
equation of the Hessian of the Hessian is of the same form, 

and hence that the points of inflexion of a cubic are in- 
flexions also on its Hessian, as was otherwise proved, Art. 173. 
Any equation of the form a (a +y*+2*) + Bxyz=0 can obvi- 

ously be reduced to the form XU+pH=0. In fact we have 

a+y+ 2+ 6mayz= U, —m (a+ y+ 2) + (14 2m’) ayz =H. 
Solving, (1+ 8mm’) (a*+y°+ 2°) = (1+ 2m’) U—6mH, 

(1 + 8m’) xyz =m’U+ H; 

whence (1 + 8m*) AX =a (1+ 2m*) + Bm", (1+ 8m’) w=—6ma+ Bf. 

Let us now form the equation of the Hessian of XU+ 64H; 
that is to say, of 

(A — 6m’) (x? + y° + 2°) +6 [Am + pw (1 +2m’*)} xyz =0, 
and the result is : 

— (= 6m) frm + p (14+ 2m')}* (a? + y" + 2" 
+[{(A— 6m)’ +2 {frm + w (1+ 2m’*) Jaye = 

and, by what has been just proved, this is of the for 
rv’ U+ p Z=0, whence 

(1 + 8m*) V’ = — (1+ 2m”) (A— 6um"*) {rm + pw (1 + 2m*)}? 

+m’ [(X — 6um*)’ + 2 {Am + w (1 + 2m*)}*], 

(14+ 8m’) p’ = 6m (A — 6wm*) {Am + pw (1 + 2m’*)}? 

+ [(X — 6pm’) + 2 {Am 4+ pw (1+ 2m’)}*1. 
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Expanding, and remembering that we have 

S=m—m, T=1—20m*’- 8m’, 

these values may be written 

NM =—28r7u— Trap? + 88"u*, w =r? + 12SAp? +2 Ty’. 

The values of X' and uv’ being expressed in terms of the in- 

variants, the expressions just given will hold good, no matter 

how the equation be transformed, and therefore the Hessian 
of 7U+6wH, where U and H have the general values of 
Arts. 217, 218 is XU + pw’ H, d' and pw’ having the values just given.* 

Thus when 2’: p’ is given, we have a cubic to determine 

the ratio X: w; that is to say, there are, as has been already 
stated, three cubics which have a given cubic as their Hessian. 

Since, as a particular case of the foregoing, the second 

Hessian 
H (HU) =8 S'U+ 2TH, 

it follows that 7’=0 expresses the condition that the second 
Hessian shall be the original curve. If S=0; that is to say, 
(Art. 220) if the equation is reducible to the sum of three 

cubes, the Hessian coincides with its own Hessian, and there- 
fore consists of three right lines, as the next article will show. 

226. The Hessian meets a curve in the points of inflexion; 

that is to say, in the places where three consecutive points of 

the curve are on a right line. If, then, the curve be not a 

proper curve, but a complex, including a right line as part of 
it, every point on that line is a point on the Hessian; and 

therefore when the curve consists of three right lines, these lines 
constitute the Hessian. This may be verified by forming the 
Hessian of xyz=0. Thus, then, the system of conditions that 
the general equation shall represent three right lines is written 

down by expressing that the coefficients in the equation of 
the Hessian (Art. 218) are proportional to the corresponding 

coefficients in the equation of the cubic, viz. 

Poe <6 a. age be by. 08 ee Fi ? 
1 

a system of forty-five equations, on the face of them equivalent 

* This was proved by direct calculation in the first edition, and it was thus 

that the values of S and T were there obtained. 
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to nine, but which can be really equivalent only to three in- 
dependent equations. For (Conics, Art. 78) only three con-— 

ditions are necessary in order that an equation of the third 

degree, containing nine independent constants, should represent — 
a system of three lines involving only six constants. It may 

be verified, by means of the values (Art. 218) of a, b, &c., that 
the forty-five equations actually are equivalent to three, as has 

been stated. 

227. The Hessian of XU+ 6yuH being X'U + p'H, the former 

‘ ; . 50 : , ; : 
will represent three right lines if “ =o; which, introducing 

the values (Art. 225) for 0, pw’, gives us the equation 

M+ 249 py? + 8 Trp? — 485° u* = 0. 

This being a biquadratic, we see that, as has been already more 
than once stated, four systems of three right lines can be drawn 

through the intersections of Uand H. This biquadratic, solved 

by the ordinary methods (see Todhunter’s Theory of Equations, 
Chap. XIII.), gives 

* a(t) + V(t) + V4) 
where ¢,, ¢,, ¢, are the roots of the equation 

+ 128+ 48S°t— 7° =0, or (¢+48)*= 77+ 648". 

Thus, then, the reduction of the equation of any non-singular 
cubic to the canonical form can be effected. We first form 
the equation of its Hessian (Art. 218), and calculate the values 

of the invariants S and 7’ (Arts. 220, 221). The present article 
then shows how we can form an equation \U+ 6uH=0, which 

shall be resolvable into three linear factors. By solving a 

cubic equation we can find these factors X, Y, Z And then 
comparing the given equation with the form 

aX? +bY°+ cZ°+6mXYZ=0, 

we can determine a, 0, c, m, by equations of the first degree. 

Ex. 1. Calculate the invariants of the cubic 

ax (y? — 27) + by (2? — x?) +. cz (x? — 9?) = 0, 

228. Of the four tangents which can be drawn from any 

point of a cubic to the curve, two can coincide only when the 

ae gine 

SR ee eT Oe ee eS eS a eee 

ea 
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curve has a double point, since a cubic has no double tangents. 
The equation of the four tangents is (Art. 78) A? =4A’U, where 
if V=x*+y'?+2°+ 6mzyz, 

A =8 {a' (av? + 2myz)+y' (y? + 22x) +2' (2? + A2may)}, 

A’ = 8 {x («+ 2my'e') + y (y?+2me'x’) +2 (2?+2mz2'y’)}. 

Making z= 0 in Ai=4A'U, we get the quartic, which determines 

the four points in which the tangents meet the line 2, viz. 

8 (vn? + yy" + 2mery "=A (ay?) {x (w"42my2!) + yly"+2me'a!)} 
or (a + 8my'z') x* + 4 (y? — mz'x’) wy 

— 6 (a'y' + 2m?2"*) ay? +4 (x — my'z'\ xy’ + (y? + 8m2'zr') y* = 0. 

From what has been said it appears that the discriminant of 
this quartic must contain as a factor the discriminant of the 
cubic. Now remembering that v* +" +2" + 6mz'y'z'=0, we 

find for the invariants s and ¢ of the quartic 

= 12 (m* — m) 2 = — 1228, 

t= — (1— 20m’ — 8m’) 2° =—2°T. 

Hence the discriminant of the quartic, 272 —s*, is 272? (7"+ 648°) ; 
and it is easy thence to see that the discriminant of the cubic is 

7*1645", 

229. The anharmonic function of the four points determined 

by the quartic of the last article evidently is the same as the 
anharmonic function of the pencil of four tangents. Now if the 

roots be a, 8, y, 6, the anharmonic function of these roots is 
any one of the mutual ratios of the quantities (4 — 8) (y— 9), 

(a—+y)(8—8), (a—8)(8-—y). We can form by the method 
of symmetric functions the equation which determines these 
quantities; and if the coefficients of the quartic be a, 4), 6c, 
4d, e, we find a®y’? —12asy+ 16 /(s°- 27¢?)=0. The mutual 
ratios of the roots are not altered if we increase them all in the 
same proportion, by substituting, say ay=2zs', when we see 
that the anharmonic ratios are the mutual ratios of the roots of 

27t" Y Se ae tects: eee ae ; cores Peete z e420, /(1 =) 0, or z 20+ /(1+ rm) 0 

Thus, then, the anharmonic function depends solely on the ratio 
ZT? : 8°, and is independent of the point whence the tangents 
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are drawn (Art. 167). If Z’'=0, the equation just given reduces 
to 2° —3z+ 2=0, of which two roots are equal; one, therefore, of 
the ratios becomes unity, and the anharmonic becomes an 
ordinary harmonic ratio. If S=0, the equation in y wants 
its second term and becomes of the form y* = m*, whose roots are 

of the form m, mw, mw’, where is an imaginary cube root of 

unity; and the common ratio of the roots is w. This has been 
called equi-anharmonic section. 

230. By the help of the canonical form can be calculated, as 

in Art. 225, the invariants S and 7’ of X\U+ 6u4, or of 

(A — Gum”) (a + y? + 2°) + 6 {mr + pw (1+ 2m")} xyz, 

and we find, without difficulty, 

S (AU + 6¥H)=Sr+ Trip— 249° py? — 48ST Ap? — (1? +488" )u*, 

T (XU + 6uH) = Tr — 96832 — GOSTAY? — 20 T?2p 

+ 2405 Tr2u* — 48 (ST* + 96S") Ap — 8 (728° T+ 7) p. 

And if, by the help of these, we form the discriminant & or 
T” +-64S°, we find 

RU + 6uH) = B (d+ 24 Sdéy? + 8 Trp? — 488%p')', 
where the factor multiplying £& is the cube of the quartic function 
of A, w, in Art 227; as might have been foreseen, since if the 
cubic U have not a double point, the only cubics with double 
points which can be drawn through the points of inflexion are 
the four systems of right lines. The values just given for the 

Sand T of \U+ 6H are covariants of this quartic function 

of A, 3 differing only by the numerical factors 4 and 2 respec- 
tively from the Hessian, and the covariant called J, (Higher 

Algebra, Art. 209); and the coefficients of U and # in the value 
of H(AU+6uH) differ only by numerical factors from the 
differentials of the same quartic with respect to \ and yp. 

All covariant cubics can be expressed in the form \U+ ywZH, 
as is illustrated by the following examples: 

Ex. 1. If a, d, c, &c. denote the second differential coefficients, and A, B, &c 

denote bc —f*, &c., as Art. 184, and if a’, 0’, A’, B’, &c. denote the corresponding 
quantities for the Ilessian then 

Aa’ + Bb’ + Ce’ + 2Ef’ + 2Gq' + 2Hh’ = 0 
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is a covariant cubic. We use the values 

a=2, f=mx; A= yz— m2, F= myz — mz, 

b=y,g=my; B= 2x — my, G = m2zx — my’, 

e=2, h=mz; C= ay— m2?, H= mzy — mz’, 

a’ =—6mx, f'= (1 +2m3)a ; A’ =36m4yz — (1+ 2m3)%x?, FY = (14+2m?)2y2z+-6m?(1+2m?)x?, 

(0 =—6m’y, g’=(1+2m')y; B’ =36mitzx— (1 +2m?)*y?, G’ = (14+2m3)220+6m?(1+2m)y?, 

e’=—6m%z, h’=(1+2m')z; C’=36mitay —(1+2m?)?22, A’ = (14+2m?)2ay+6m?(14+2m?)z?. 

Hence the covariant in’ question is found to be —2SU. It might have been 

foreseen that it could only differ by a numerical factor from SU, for it is a covariant 

of the fifth degree in the coefficients; and, therefore, if it be of the form aU + 6H, 

a must be of the fourth, and 4 of the second degree in the coefficients ; but there is 

no invariant of the second degree, and S is the only one of the fourth, 

Ex. 2, Calculate in like manner the covariant 

A’a+ Bb+ We+2FF+2G’9+2Hh, Ans, —-TU+12SH. 

231. The order in the variables of any covariant of a cubic 
is a multiple of three ; and, generally, if the order of any ternary 
quantic is a multiple of three, so is that of every covariant. 
This appears at once from the symbolical method explained, 
Migher Algebra, Chap. XIv., for every symbol (123) diminishes 
by three the order of the function on which it operates, and 
in the symbolical method the order of the function operated on 
is a multiple of that of the given quantic. 

It is easy to see that the equation of every cubic covariant 
to a + y°+2° + 6mxyz = 0 is of the form a (a* + y°+2°)+Rayz=0, 
which, as we have seen, is reducible to the form XU+ pwH=0. 

In order, however, to express covariants of higher order, it is 
necessary to have a third fundamental covariant. That which 
we select may be defined as follows: consider the polar conic of 
a point az’ +&c., and the polar conic of the same point with 
regard to the Hessian a’a* + Ke. then there is eee Art. 378) 
a conic covariant to these two, viz. 

(BC+ BC-2FF’) 2 + &. =0; 

and the condition that this conic passes through the original 
point gives a covariant of the cubic. Since B, C, &c. contain 
the variables each in the second degree, this covariant is of the 
sixth degree in these variables; and since B, C are of the 
second, and B’, C’ of the sixth degree in the coefficients, it is 
of the eighth order in the coefficients. The actual value of this 
covariant for the general equation has not been calculated, but 

DD 
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using the values for A, B, &c. given in the last article, we 
find that for the canonical form the covariant is 40 where © is 

3m* (1 + 2m’) (x? + y° + 2°)? — m (1 — 20m* — 8m*) (a* + y? + 2) xyz 

— 3m” (1 — 20m® — 8°) a*y*z” — (1 + 8m’)? (y*2" + 2°a* + ay’), 

or m’ (2+ m’) U?—m (14+ 2m’) UH 

+ 8m? H* — (1 + 8m’)? (y°2* + 2°a* + a*y’), 

There are two other covariants of the same order in the variables 
and in the coefficients as ©, which had equal claims to be 
selected as the fundamental covariant of the sixth order. The 
first represents the locus of a point whose polar line with regard 

to the Hessian touches the polar conic of the same point with 
regard to the cubic, or 

AL”? + BM” + CN” +2FM'N'+2GN'L' + 2HL'M, 

where L’, M' N’, are the differential coefficients of the Hessian. 
This covariant is expressed at once in terms of © by the help 

of the formula (Conics, Art. 381, Ex. 1) OS'-Z. We are 
here to write for ©, —2SU; for S', 6H; for /, 40; and thus the 
covariant is found to be —4 (@ + 3SUH). In like manner there 
is a covariant which represents the locus of a point, whose 

polar with respect to the cubic touches the polar conic of the 
same point with regard to the Hessian, or 

A’? + BM’ + ON’ +22F'MN 4+ 2GNL 4+ 2H'IM =0. 

Calculating this by the formula ©'S — /’( Contes, Art. 381), and 
writing for 6’, -— 7U+12SH; for S, U; and for f, 40, the 

covariant in question becomes 

~ (TU* —128UH + 40). 

232. Every covariant of 2° + y’ + 2° + 6mayz will plainly be 
a symmetric function of x, y, z, and therefore capable of being 
expressed in terms of a*°+y’+4+ 2°, ayz, y+ 2a +a°y’3 and 
therefore in terms of U, H, ©, together with the invariants. 
But a covariant is not necessarily a rational function of U, 
H, ©. In fact, we can, as at Higher Algebra, Art. 223, form 

a covariant of which the square, but not the covariant itself, 



INVARIANTS AND COVARIANTS OF CUBICS. 203 

is a rational function of these quantities. Let the coefficients 
of the cubic , 

ph (1+ 8m’) (a? + y! +2") p” 
+ (1 + 8m’)? (y°2? + 2°x* + ay") p —(1 + 8m’)x*y’2* =0, 

be p, g, 7; then, by the theory of cubic equations, if J be 
(1 + 8m°)* (y* — e) (2 — x’) (x — y’), we have 

J* = pq? + 18pqr — 277" — 4q° — Arp’. 

But p, g, 7 are each immediately expressible in terms of 

U, H, ©, and substituting their values in the equation just 
written, it becomes 

J*=40°+ TU’ 

© (—- 48° U* + 28STU*H — 728° U*H* — 18 TUH® + 108 8H") 

—169°WH-US TWH’ —47° UH + 54ST H* 

— 432,S°UH*® —27TH*. 

The identity just given may be written in the form 

40 (0+ AU") (O+ pU")=J" + AO, 

from which it appears that the system © (O+2U") (O + wU”) is 
touched by H; that is to say, H either touches each of the curves 
represented by the three factors, or passes through the inter- 

sections of every two. But ©, Uand H have no point common 
to all three, therefore © must be touched by H. The curve J 
which passes through the points of contact consists of the 
harmonic polars of the nine points of inflexion. We add an 
example or two to illustrate the possibility of aes all 
other covariants in terms of U, H, ©. 

Ex. 1. To obtain the equation of the nine inflexional tangents. It was shewn 

(Art. 217) that the inflexional tangents are U — (1+ 8m) a’, U— (1+ 8m’)y3, 

U— (1+ 8m*) x. Multiplying together these three factors, we have 

U3 — (1 + 8m) (x +.y8 + 2°) U2? + (1 + 83)? (323 + 233 + ay?) 0 — (1 + 8m?) 3x3y8z3 = 0, 

Substituting for (1+ 87m?) (x + y% + 23), (1+ 8m)? (y23 + 283 + x3y3) and (1+ 8m’) ayz 

their values previously given, we find, for the required equation of the nine tangents, 

5SUW?H — H? — U8 = 0, 

the form of the equation showing that H and @, which have been proved to touch 
each other, have the nine tangents for their common tangents. 

Ex. 2. To find the equation of the Cayleyan in point coordinates. We have to 
form the reciprocal of the tangential equation of the Cayleyan, viz. (Art. 219) 

m (a? +B? + 4) + (1 — 4m) aBy = 0, 
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The reciprocal of this is formed by Art. 222, and the quantities 2° + y* + 2%, &e. 
then expressed in terms of U, H, 0. The resulting equation of the Cayleyan is 

480 — TH? —-16S°UH = 0. 

233. In like manner every contravariant of the cubic can be 
expressed in terms of three fundamental contravariants; and for 
these three we may employ the three already mentioned, viz. 
the evectants of S and 7’ (Arts. 219, 221), which we have called 

Pand Q, in terms of which every contravariant cubic can be 
expressed, and the reciprocal & (Art. 222). We can, as in 
Art. 230, form the invariants of AP+ wQ, which for the canonical 
form is 

{mr+ (1—10m*) w} (a+ B°+ ry’) + [(1 —4m*) XN- 6m" (5 +4m?) apy, 

and we find 

S(AP+ wQ) = (1928° — T’) \*+ 7689" Te 

+216 (387? — 648%) 2p? +216 (T° — 6478") Ap 
— 1296 (5S8°T* + 648°) p', | 

T(nP+ wQ) =(T?+5768°T) r° + 288 (58°72 — 1928") ru 
+ 540 (38ST°— 3208*7T) r*p?+ 540 (Z'*— 448 9° T’) iy) | 
— 19440 (78°T? — 649° 7) rout 
~ 11664 (397 — 32,8*7? + 20488") Me 
— 5832 (7° + 408° 7° + 25608°7') w° 

R(AP+ wQ) = {SA + Tut T2087? w? + 1089! 

+ 27 (TL? — 168") p*}’ BR, 

and, as in Art. 230, the sacha and sextic functions of A, wu 

which occur in the vshiien of S and 7 are the covariants of the 
quartic function whose cube occurs in the value of £. 

Again, H(AP+ “Q) 

= (TD? + 1448°02u + 32497 du? + 108 (T? — 168°) w} P 
— {494+ 37 y 4+ 1445°?n + 108STp*} Q, 

the quantities multiplying P and @ respectively being the differ- 
entials with respect to w and A of the same quartic function. 

234. In like manner we can form the Pand @ of XU+6yH, 

and we find 

P(xU+ 64H) = Pr? + ig 129Pru?+ 4(SQ- TP) p’*, 
Q(AU + 6h) = Qr’ + 608PAp — 30TPA'p* — 10TQX*p 

- + 120(28°Q — STP) rp* + 24 {STQ — (1? + 248°) P} pw’ 
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Now if we denote by s and ¢ the S and T of 1U+ 6u4H, 
as given Art. 230, these values differ only by the factors 
3(7* +648") and (7? + a respectively guy 

(48.9°P + 7) ~ + (3 TP— 48Q) 

(48 S°P+ Fe ¢ (37P- 4gq) % mn 

So again, forming the P and Q of AP+wQ, the results are 

P(AP+ wQ) = (8S°U— TH) + 18d*p (STU + 88°) 

+ 9rp*{( T° —328") U+ 128TH} —54y*{48°TU— (7? + 328°\H}, 

Q(AP+ pQ) =r {168° TU +4 (T” + 1928*) HZ} 

+ 30A%p {[S( 7" - 648°) V+ 168° TH} 

+ 15A%u? {7'(T? —3208°) U+4897°H} 
— 270A7u? (16.8? T?U — T(T* — 648°) H} 
— 1620Ap* {ST°U+ 48° (7? — 648°) H} 

— 324y° {( 7" + 247°S* + 5125") U— 68ST (T? + 1288") 7}, 

and if we now write s and ¢ for the S and 7 of AP+yQ, as 
given Art. 233, these values differ only by factors from 

2 ds ds (488°U+ 18TH) F + (TU-2408H) ©, 

dt dt 
oe (TU- 24.51) —— 5 

To these formule may be added the reciprocal of XU + 6uH/, 

which is 

(At + 24.9 02n? + 8 Trp? — 489%") F—24y (n° 4+27y*) P? 

— 24u" (A* — 4S") PQ — 8rp* Q", 

and (48S9°U+ 18TH) 

and of AP+ wQ, which is | 

4 {SM + Tw t+ 728°r*p? + 108ST Ap? + 27 (7? — 168°) p4} © 

—{TA*+2168TA*p’ + 108 (7? — 648°) Au’ — 3888 7'S2u'} H? 

— {16S°A*+ 3287 rA8u + 18 T?A*p? + 2169 (7? + 328°) uw} UH 

+ {645°A'w + 1448? T 2 p?4+108ST"Ap?4 27 T( T+ 168") uw} 0". 

235. We next mention a useful identical equation. If in a 
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cubic U we substitute 2+’, y+rAy’, 2+Az2' for a, y, 2, let 
the result be written 

U+ nie BN P+2°U'; 

that is to say, let S and P denote the polar conic and polar line 
of z'y'z' with respect to U; or, for the canonical form, let 

S= (x +2myz )a' + (y’ +2mzex )y'+ (2 +2may ) 2’, 

P=(x" + 2my'2') xv + (y? + 2me2'x’) y + (274+ Ama'y’) 2. 

Similarly, let the result of a similar substitution in H be written 

H+ 8r3+ 3011+ 1H’, 
that is to say, let = and II denote the polar conic and polar line 
of x'y'z’ with regard to the Hessian; then, by the help of the 
canonical form, we can verify the following identical equation 

3 (SI1—=P)= H'U- HU". 

It follows hence, that when z'y’z' is on the curve, and therefore 
VU’ =0, the equation U=0 may be written in the form 

SiII—=SP=0. 

From this form the following consequences immediately 
follow : 

(a) The lines P, IT intersect on the cubic; that is to say, 
the tangential of the point «'y'z’, or the point where the tangent 

P meets the cubic again, is the intersection of P with 1, the 
polar of z'y'z' with respect to the Hessian (see Art. 183). 

(0) The points of contact of tangents from z'y'z’ to the 
cubic, which are known to be the intersections of S with J, are 

also the intersections of S with 3, the polar conic of 2'y'z’ with 
respect to the Hessian. 

(c) The equation SIT—SP=0 is that which would be 
obtained by eliminating an indeterminate 9 between S+ 62 =0, 
P+6=0. The first denotes a conic through the intersections 
of S, =; the second denotes the polar of a’'y'z’ with regard to 
the same conic. Hence the given cubic may be generated as 

the locus of the points of contact of tangents from a point a'y'z 
to a system of conics passing through four fixed points. 

(dq) If S+@= denote two right lines, P+6f1 obviously 
passes through the intersection of these lines; this intersection 

meee 

cgi alia 
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is therefore a point on the cubic, and P+ OI the tangent at it. 
Hence the four points of contact of tangents to the cubic from 

x'y'z’ form a quadrangle, the three centres of which are 
on the cubic, and are the points cotangential with a'y'z 
(see Art. 150). 

(ec) If we consider the intersections of the curve and its 

Hessian by any liné, for instance, z=0, the identity of this 
article gives us 

ab — ba = 3 (a,6, — b,a,), 

that is to say, the invariant P of the two binary cubics vanishes. 
Hence, again appears that the Hessian meets the curve in its 
inflexions. For since P=0, the eliminant of the two binaries 

is Q=0 (Higher Algebra, Art. 200); therefore at points of 
intersection u + Av includes a perfect ,cube. 

236. I have used this identical equation (Phil. Trrans., 1858, 
p- 535) to form the equation of the conic through five con- 
secutive points on the cubic. Since S touches the cubic, and 
P is the common tangent, the general equation of a conic 
touching U at a'y'z' is S-LP=0, where L=ax+ By+ yz is 
an arbitrary right line. Now by means of the identity estab- 
lished, the equation of the cubic may be written in the form 

Il (S— LP) =P(z— LM). 

Hence, the four points where S—ZP meets the cubic again are 
its intersections with =- LII; and if the latter conic pass 
through «'y'z’, the former will pass through three consecutive 
points on the cubic. But on substituting a'y’s’ for ayz, we 
have ='=Il'=H’, and the condition that =—ZII should pass 
through 2'y'z’ is L'=1. 

Next, in order that S— LP may pass through four consecutive 
points, S— LII must have P for a tangent at the point a’y’2’. 
Now the tangent to S— LI (being the polar of a’y’z’ with 
respect to this function) is 

20 — LT — LI’, 

or (since L’=1, and Ml’ = H’) is I1— H'L, and since this is to be 
1 

proportional to P, we have L = @P+ ie 
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The general equation, therefore, of a conic through four 
consecutive points is 

8— 6P*— 7 PM=0, 

a $-9Ppa- 4 = an we — oR = 

passes through the two points where the former conic meets the 
cubic again, the equation of the cubic being reducible to the 
form 

2 os — ———— n (S-@P*— 7, Pm) = P(2-ePn— 7A). 

237. Since these two conics have P for a common tangent, 
it will be possible, by adding the equations multiplied by suitable 
constants, to obtain a result divisible by P, and the quotient 
will represent the line joining the points where the conic meets 

the cubic — It is necessary then to determine yp, so that 

pS+3 ~F II’ may be divisible by P, which we do by equating 

to nothing the discriminant of this quantity. Now this discrimi- 
©’ 

nant when calculated will be found to be pe’ + 4p > . This 

40’ 

rae 
and since one of the factors is P, if we denote the other by J, 
we have 

quantity, therefore, will be divisible into factors if w=— 

Le 

By the help of this equation, the equation of the cubic given at 
the end of the last article is transformed to 

(1+ uP) (8 - oP - Pn) = Pp’ \u- f.n- (t+ nF). 

The form of the equation shews that [I+ wP is the a at 

the tangential of the given point on the cubic, and that If —F IT 

passes through the second tangential of the given point (see 
Art. 155). 
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238. In order that the conic may pass through five con- 
secutive points, the coordinates a’, y’, 2’ must satisfy the equation 

_ The only difficulty is to determine the result of substituting the 
coordinates 2’, 7’, z'in M. Now if we differentiate with regard 
to x, y, or 2, the equation 

and substitute a’, y’, 2’ for x, y, 2 in the result, observing that 
wo dr ae atl 
gt 2 aor) dal 2 gl + FP have M'=2y, and hence the 

S$ $8 result of substituting w'y'z’ for xyz in 

40’ 
is 4—OZ1'=0, and since w has been found to be =~ Fas 

J 

we have 0= mel and the problem is completely solved. 

239. We next mention another general form to which the © 

equation of a cubic may be brought, viz. 

| ax’ + by? +ca°+du’=0, where e+y+2+u=0. 

The polar conic of any point 2’y’z'u’ onan 

ax'a” + by'y" + cz'2" + du'u? 

the polar conic of the point for which a’ =0, y/ Her is a pair of 
lines passing through the point w=0, 2=0, &e.; and hence it 
appears that the points ry, zw; xz, yu; xu, yz are pairs of cor- 
responding points on the Hessian. ‘The form just written 
contains implicitly eleven constants, and is one to which the 
general equation of a cubic may be reduced in an infinity of 

ways. ‘lhe values of the invariants for this form are S=— abcd, 

T=b'c'd’ + c'd’a’ + d’a*b’ + a’b’c’ —2abed (ab+ac+ ad+ be+cd+ db). 

The discriminant is formed from the three equations got by 
differentiating with respect to , y, 2 respectively, viz. 

aa’ =du', by'=du", cz’ =du’, 

EE 
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whence we have x, y, 2, w respectively proportional to the 

reciprocals of ./(a), /(b), V(c), /(d). Substituting. these values 
inx+y+2+u=0, we have the discriminant in the form 

(bed) + »/ (eda) + / (dab) + /(abc) = 

which cleared of radicals is, as before, R = T’ + 645° = 0.* 

240. We conclude this chapter with a few remarks on the 

case where the cubic breaks up into a conic and a right line, 
If a curve have either two double points, or a cusp, not only 

does its discriminant vanish, but also the functions obtained by 

differentiating, with respect to any of the coefficients of the 

original equation, the general expression for the discriminant 

in terms of these coefficients. See Higher Algebra, Arts. 103, 113. 

Now the expression for the discriminant of a cubic being of 
the form 7*+64S*=0, its differentials are of the form 

dT ys dT aT 20 +1928" , 22 +1928", &e. 

If the curve have a cusp, we have S=0, 7'=0 (Art. 224), and 

all these differentials vanish in conformity with the theory. If 

the curve have two double points, that is to say, if the cubic 
break up into a conic and right line, we have the equality 
of ratios 

dT d§_dT dS_daT dS , 
ie rt Oh ee ae ae 

These equations if written at length would form a system of 

equations, each of the eighth order in the coefficients, which are 

the system of conditions that the™general equation of the 
third degree should be resolvable into factors. 

241. There is another form in which the foregoing conditions 
may be written. In the first place we remark, that since a double 
point on a curve is also a double point on its Hessian, the 
coordinates of such a point satisfy the equations got by differen- 

tiating with respect to a, y, 2, the equations both of the 

* For the other covariants and contravariants when the equation is written in this 

form, see Phil. Trans. 1860, p. 252 ; and for some remarks on the method of forming 

invariants, &c., when the equation has been written with an additional variable con- 

nected by a linear relation with the original variables, see Geometry of Three 

Dimensions, Art, 538, 



INVARIANTS AND COVARIANTS OF CUBICS. 211 

curve and of the Hessian. In the case of the cubic, these six 

differential equations are all of the second degree, and we 
can linearly eliminate from them the six quantities 2’, y’, 2°, 

yz, 22, xy, so as to obtain the discriminant in the form of 

the determinant 

died by, Ciy M, Ay a, 

G, b, Coy by mM, 6, 

Os, Dey Cy Cyy Cy ™ 

a,b, ¢, m, a, a, 

a,, b, ¢,, b,, m, b, 

as, b,, Cc, Coy Cy m =0. 

We have seen also (Art. 226) that the conditions that the curve 
should have three double points are expressed by taking any 

of the first three rows, and the corresponding one of the second 

three rows, and then equating to zero the determinant 

formed with any two columns from these rows. So now in 
like manner the conditions that the curve should have two 
double points are expressed by taking any two of the first 

three rows, and the two corresponding rows of the second 
set, and equating to zero the determinant formed with any 

four columns from these rows. In order to prove this it is 
enough to observe that, as we shall show in the next article, if 

U=PV, where V represents a conic, and P is ax+ By+ 2, 

then the Hessian of Uis of the form XU+ uwP*. Consequently 
we have 

ie av _ a2 ae 

Gn. giz dU dU 
whence Pe a. a 

shewing that the differentials of H and U, with respect to x 
and y, are connected by a linear identical relation, and there- 

fore that the determinant formed with the coefficients of four 

corresponding terms in these equations vanishes. 

242. The Hessian of PU, where P denotes the right line 

ax + Sy+yz, and U is a function of any degree, may be found 
in various ways. The second differential coefticients of PU are 
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Pa+2aL, Ph+28M, Pe+2yN, Pf+BN+9M, Po+yL+aN, 
Ph+aM+ BL, where L, M, N, as before, denote the first, and 
a, b, &c. the second differential coefficients of U. Using these 

values in forming the equation of the Hessian, and reducing by 
means of the equations of homogeneous functions 

(n—1) L=ax+ hy +92, &e., 

we get, for the Hessian of PU, 
n 

3 n 

oar pone 
where / denotes the quantity (dc —f”) a? + &c., Art. 184, which 
geometrically represents the locus of points whose polar conics 
touch the given line. 

More generally the Hessian of UV is found by the same 
process to be 

(ntn'-1) 7.7,,, (n+n'-1) .,, 

(n+n'—1) a evan , (n+n'—1) (n+ n'—2) 
ms Peer Ey ee © + U’VO')/+ ace UVW, 

where ©, ©’, as at Conics, Art. 370, denote (be—f’) a'+ &e., 

(b'c' —f”) a+ &c., and W denotes the covariant 

(bc' + b'c — 2ff') LL' + &e. 

The form just written shews that the intersections of U, V are 
double points on the Hessian, the tangents at any such point 
being the tangents to U and V respectively.* 

* On the general theory of ternary cubic forms, see Aronhold’s Memoirs, Crelle, 

vol. XXXIX., p. 140, 1850, and vol. Lv., p. 97, 1858; Professor Cayley’s “Third 

and Seventh Memoirs on Quantics,” in the Philosophical Transactions, 1856 and 

1861, and Clebsch and Gordan’s Memoirs in the Mathematische Annalen, vol. 1, 

p. 56, 1869, and vol, vI., p. 436, 1873; also Gundelfinger, vol. Iv., p. 144, 1871. 

3 oak rs 

ii FATE 



gates 

CHAPTER VI. 

CURVES OF THE FOURTH ORDER. 

243. Ir will be remembered that we have classified curves 
of the third order by combining a division founded on 
characteristics unaltered by projection, with a division founded 
on the nature of their infinite branches. The same principles 
of classification are applicable to curves of the fourth order, 
or, as we shall call them, quartics; but the number of 
species is so great, and the labour of discussing their figures 
so enormous, that it seems useless to undertake the task of 
an enumeration. It will be sufficient here generally to direct 

attention to the principal points that must be taken into 
account in a complete enumeration. A quartic may be non- 

singular having no multiple point; or it may have one, 

two, or three double points, any or all of which may be 
cusps. In this way we have ten genera, of which the 

Pliickerian characteristics and the deficiency (Arts. 44, 82) are 

Wn: Sele Meee, ae gaat seca 2 

I, BOS OO: Te ae ae ee 

II. f° Eo" FO 1S Te te. e 

III. EOL Ie Tee 

IV. SRO So Bs Bg 

V. Bee ea 

VI. en Bs Ouse ees Mar wg | 

VIL. ye She daw ey ON Ay © 

Wit. 4.2 RCO SES 

IX. Be E oe Bi Bee Ree 

ae S00 O35 SoS ee 

viz. in each of the last four cases the curve is unicursal. 

Every quartic curve whatever may be considered as coming 
- under one or other of these genera. But there are special forms, 
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arising from the coincidence of nodes and cusps, which have to 
be considered. 

1’. Two nodes may coincide, giving rise to the singularity 
called a tacnode; this is, in fact, an ordinary (two-pointic) 
contact of two branches of the curve (see p. 28). It is to be 
noticed that the common tangent counts twice as a double 

tangent of the curve; thus, supposing that there is not (besides 
the tacnode) any node or cusp, the curve belongs to the 

genus IV., and its characteristics are as stated above; but 5=2 

means the tacnode, and t=8 means that the double tangents 

are the tangent at the tacnode counting twice, and 6 other 
double tangents. 

2°, A node and cusp may coincide, giving rise to the sin- 
gularity on that account called node cusp, and called ramphoid- 
cusp, Art. 58. It is to be noticed that the tangent counts once as 

a double tangent, and once as a stationary tangent; thus, sup- 

posing that there is not any other node or cusp, the curve 
belongs to the genus V., and the characteristics are as above; but 
o6=1, «=1 means the node-cusp; r=4 means the tangent. 

at the cusp and 3 other double tangents; +=10 the tangent 
at the cusp and 9 other stationary tangents. 

3°. Three nodes may coincide as consecutive points of a 
curve of finite curvature, giving rise, not to a triple point, but 

to the singularity called an oscnode ; this is, in fact, an osculation 

or three-pointic contact of two branches of the curve. The 
tangent at the oscnode counts 3 times as a double tangent 

of the curve; the genus is VIJ., and the characteristics are 
as above, but 6=3 means here the oscnode; and r=4 means 
the tangent at the oscnode counting 3 times, and 1 other 
double tangent. 

4°. Two nodes and a cusp, or a tacnode and a cusp, may 
coincide as consecutive points of a curve of finite curvature 
giving rise, not to a triple point, but to the singularity called 

a tacnode-cusp; this is, in fact, an osculation or four-pointic 
intersection of the two quasi-branches at a cusp. The genus is 

VIII, and the characteristics are as above, 6=2, «=1 mean- 
ing the cusp; t=2 the tangent at the cusp counting twice 

as a double tangent; 1«=4 the tangent at the cusp, counting 
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once as a stationary tangent, and three other stationary 
tangents. 

5°. Three nodes may coincide, as vertices of an infinitesimal 
triangle, giving rise to a triple point (ordinary triple point with 
three distinct tangents). The curve belongs to the genus VII., 
and the characteristics are as above, 6=3 meaning the triple 
point. fe 

6°. Two nodes and a cusp may coincide, giving rise to a 
special triple point, at which an ordinary branch of the curve 
passes through a cusp. The curve belongs to the genus VIIL, 
and the characteristics are as above, 6=2, «=1 here meaning 
the special triple point. 

7. A node and two cusps may coincide, giving rise to a 
special triple point not visibly different from an ordinary point 
of the eurve. The curve belongs to the genus IX., and the 

characteristics are as above, 6=1, «=2, here meaning the 
special triple point. 

244, In order to illustrate the distinction between the 
different kinds of double points which we have enumerated, 
let us suppose the origin to be a double point at which the 

two tangents coincide with the line y=0, then the equa~ 

tion of the quartic will be of the form y*+u,+u,=0, where 
U, = ax? + bx*y + cxy" + dy", u, = Fr" + Se y+ | 

We proceed now as in Art. 56: In-order to determine the 

form of the curve in the neighbourhood of the origin, we sub- 
stitute y= max’, we determine 8, so that two or more of the 

indices of x shall be equal and less than the index of any other 
term; and we attend only to the terms of lowest dimension 
inz. ‘Then letabenot=0. We find B=; the form of the 
curve near the origin is the same as that of the curve y’+ ax*=0, 
and the origin is an ordinary cusp. 

(1) Let a=0. We then have 8=2, and m is determined 

by the quadratic m*+bm+e=0. There are then two branches 
whose forms near the origin are respectively the same as those 

of the curves y=m,2", y=m,x", where m,, m, are the roots of 

the above equation. The branches touch each other, and the 
origin is a tacnode. 
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(2) Let this quadratic have equal roots, the form of the — 
equation then is 

(y — ma*)* + cay’ + dy’ +fa'y + &e. =0, 

and to the degree of approximation to which we have as yet 
proceeded the two branches in the neighbourhood of the 
origin coincide. In order to discriminate them we substitute 
y= max" + nx", and determine n and y as before. We find then 
y= and n*=—(cm*+fm). The form then of the curve near 

the origin approaches to that of the curve y=ma* + nz", which 
has been considered, Art. 58. The origin is then a ramphoid} 
cusp or node-cusp. 

(3) If, however, in addition to the preceding conditions we 
have f=— cm, the equation of the curve is of the form 

(y —mx*)’ + cay (y — max’) + dy’ + ga’y’ + &e. = 0, 

and on substituting y= ma’+nz" we find y=3, and ” is de- 
termined by the quadratic 

n +omn+m'(dm+g)=0; 

and if n,, », be the roots of the quadratic, the curve in the 
neighbourhood of the origin consists of two osculating branches, 
whose forms are represented by the equations y= mz" +n,2", 

y=mx'+n,x*. Since the difference of these values of y com- 

mences with an odd power of x, the branches cross as well as 
touch at the origin. ‘The origin is now an oscnode. 

(4) If, however, in addition to the former conditions we 
have the roots of the last-mentioned quadratic equal, or 

dm+g=tic’, the equation of the curve is of the form 

(y — ma’ — cay — dy’)” = Any’ + By’, 

and, as before, we find that its form near-the origin is given by 

the equation y=ma*+cmz*+pa*. The origin is then a tac- 
node-cusp. The node can have no higher singularity in a 
proper quartic, for the next step would be to suppose A to 
vanish, in which case the equation would break up into two 
of the second degree. The case where the origin is a triple 
point does not seem to require illustration. 

aR 
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245. We have thus far not attended to the distinction of 
real and imaginary. Assuming that the quartic curve is real, 
then imaginary nodes or cusps can present themselves only in 

pairs, and we may distinguish the cases accordingly; thus we 
may have one real node, two real or two imaginary nodes, 

three real or one real and two imaginary nodes; and the like 
for cusps. Again; any real node may be a crunode or an 
acnode. The distinctions as to real and imaginary scarcely 
present themselves in regard to the special singularities above 
referred to (the condition that imaginaries must present them- 
selves in pairs, implying for the most part that these singu- 

larities are real); the only distinction seems to be in regard 

to the ordinary triple point, which may be a point with three 
real tangents, or with one real and two imaginary tangents, 

viz. in the former case the point is the common intersection of 

three real branches of the curve, in,the latter case it is the 
common intersection of one real and two imaginary branches 

of the curve; or, what is the same thing, we have a real 
branch passing through an acnode. The point does not visibly 
differ from an ordinary point of the curve, resembling in this 
respect the special triple point 7° above referred to. The dif- 
ference is, that in the case of an ordinary branch through an 

acnode the tangents are one real and two imaginary; in the 

case of the special triple point they are all real and coincident. 

246. There are yet other specialties which may be taken 
account of. A node may be in regard to one of the branches 

through it a point of inflexion; that Is, the tangent to the 

branch at the node may meet the branch in three consecutive 
points (or the curve in four coincident points); or, again, the 
node may be in regard to each of the branches through it a 
point of inflexion. Such a node may be considered as the 

union of an ordinary node with (in the first case) a point of 
inflexion, and with (in the second case) two points of inflexion ; 
and the node may be termed a flecnode or a biflecnode in the 
two cases respectively. The point or points of inflexion thus 

coinciding with the node must be reckoned among the inflexions 
of the curve, and the number of the remaining inflexions 
diminished accordingly. A biflecnode has properties analogous 

¥F 
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to those established (Art. 170, et seg.) for the inflexions of cubics. 

In general, if we lock for the locus of harmonic means on 
radii-vectores drawn through the origin, which is supposed 

to be a double point on the quartic u,+u,+u,=0, we find 

u,+2u,=0. When, therefore, u, is a factor in u,, the locus 
becomes a right line, and the double point, having a harmonic 
polar, has the properties established (Art. 170). The points 

of contact of tangents from it lie on a right line, and the 

curve may be projected so that this point shall become a 
centre, or else so that all chords parallel to a given line 

shall be bisected by a fixed diameter. In the latter case, 
the form of the equation is in general 

oY (w—a) (w@— 6) =+4 A(x —-c) (w— d) (w-e) (af). 
There is no difficulty in discussing, as in Arts. 39, 199, the 
different possible forms of curves included in this equation, 
according to the reality, and to the relative magnitude of 

a, b, &c.; and in deriving thence the different possible forms of 

the projections of these curves. : 

247. Once more, a quartic may have another kind of 

singular point, of which account might be taken in the 

classification, viz. a point of undulation, that is to say, one in 

which the tangent meets the curve in four consecutive 
points. The tangent at such a point replaces two stationary 

tangents and one ordinary double tangent. A quartic may 

have four real points of undulation, as we can see by writing 

down the equation waz ‘ene where S is any conic touching 
the four lines w, x, y, 2 

248. We have not yet exhausted the list of characteristics 

unaltered by projection which would have to be taken into 
account in a complete classification of quartics. It will be 

remembered that we divided non-singular cubics into unipartite 
and bipartite according as all the real points of the curve are or 
are not included in one continuous series; and it is natural to sup- 

pose that similar distinctions exist in regard to quartic curves. 
The possible forms of non-singular quartics have been studied 

in detail by Zeuthen (Math. Annalen, vi. 411). He remarks 

that the branches of a curve may be divided into those of odd 
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order met by any line in an odd number of points, and those of 
even order. ‘The latter are what we have called ovals (Art. 200), 

using the word to include not only ovals in the ordinary sense 
but also their projections. In this sense, for instance, all the 
forms of conics would be described as ovals. Zeuthen shows 

that a non-singular curve cannot have more than one branch of 
odd order, and therefore that a curve of even degree cannot have 
any. A quartic, therefore, can only have ovals. It is at once 

apparent that if a quartic have two ovals, one wholly inside the 
other, it can have no other real point. Tor if it had, the line . 

joining this to a point inside the interior oval must cut the curve 

in five points. For the same reason the interior oval cannot 

have bitangents or inflexions. A quartic of this kind having 

two ovals, one inside the other, is called an annular quartic. 
This reasoning does not exclude the case of ovals exterior to 

each other, but the quartic can at most have four such ovals; for 

if it had any other real point the conic passing through this and 
through points inside the four ovals respectively would meet the 
curve in nine points. That a quartic may actually have four 

such ovals appears as well from the curve (x? — a’)"+(y"— 0)’=c", 
(c <b) considered p. 43, as from the following illustration which 

Pliicker gives in order to show that the 28 tangents which a 
non-singular quartic can have may be all real. Consider 
the curve Q=+k, where 

Qa (y'—2"\(a—1)(o- §)-2 fy’ +2(e—a)} 
Now the equation © = 0 represents a 
quartic having three double points as 
shown in the dark curve in the annexed 
figure ; and the equation 2 = denotes | 

a curve not meeting { in any finite 

point, which deviates less from the 

form of the curve © the less we 
suppose &, and which according to 
the sign we give k is either altogether 

within or altogether without the curve 
©. When it is altogether without, 
the curve is unipartite; when it is 
altogether within, the curve in the first instance consists of four 
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meniscus-shaped ovals, one in each of the compartments into 

which the curve Q is divided. ach meniscus has one tangent 
touching it doubly; and, besides, it will be seen that any two 
ovals have four common tangents, and that there are six pairs of 

ovals. It will readily be conceived that, as the value of the 
constant is supposed to change, first one, then another of these 

ovals becomes imaginary, so that non-singular quartics may be 

either unipartite, bipartite, tripartite, or quadripartite. We can 
in like manner conclude that a quartic having one double point 
may be either unipartite, bipartite, or tripartite; and one having 

two double points, either unipartite or bipartite.* 

248 (a). Zeuthen takes as the basis of his classification of 
quartics the real bitangents of the curve, which he divides into 

two classes. When a quartic has a pair of ovals exterior to each 

other, it is easy to see that (just as if they were two conics) 

these ovals have four common tangents and cannot have more. 

These common tangents are Zeuthen’s bitangents of the second 

kind. Ifthe quartic have two ovals exterior to each other the ~ 
number of such bitangents is 4; if it have three such ovals the 

number of such bitangents is 12; if it have four, the number 
is 24. Zeuthen’s bitangents of the first kind may be either 
(a) lines doubly touching a single branch of the curve; or 

(b) bitangents, both of whose points of contact are imaginary. 
Zeuthen has proved that every quartic has four real 

bitangents of one or other of these two species, which four we 

shall call the Zeuthen bitangents. The total number then of 

real bitangents to a quartic is got by adding to these four 

the 0, 4, 12, or 24 bitangents of the second kind ; and accordingly 

is either 4, 8, 16 or 28. Zeuthen’s method of proof is to consider 
the series of quartics, S+2S’, where S and S are any two 
non-singular quartics. The number of real bitangents of a 

curve of the series will only alter when A is such that the curve 
has some singularity. Zeuthen shows that as » passes through 

the value for which the curve has a double point, only real 
bitangents of the second kind are lost or come into existence; 
aad that for no ordinary singularity do bitangents of the first 

* In general the maximum number of “ parts” of a curve is one more than the 

* deficiency.” 
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kind change into those of the second, or vice versd. But 
consider a bitangent of the first kind touched by a branch in 
two real points. As a parameter in the equation alters, these 
points may approach each other and the intervening arc of the 

curve become smaller. At last the points coincide and the curve 

has'a point of undulation ; after that the bitangent has imaginary 

points of contact..°Thus we see that at the value of A, for 
which the curve has a point of undulation, Zeuthen bitangents 
of the form (a) may change into the form (6), or vice versd. 
The only change then that affects bitangents of the first kind 
being an interchange of these two forms, the total number of such 

bitangents is the same for the whole series of quartics included in 
the form S+2S’, and therefore is the same for every quartic; 
and Pliicker’s example shows that the number is four. 

248 (b). When a branch has a tangent touching it in two 
real points, it is obvious that the arc at each of these points 
turns its convexity towards the tangent, and that there is an 
intermediate part of the arc which turns its concavity towards 
it, this concave part being separated by a point of inflexion at 

each end from the convex parts. Kvery such bitangent then 
implies two real points of inflexion; and it is not difficult to see 

that the converse of this is also true. Since there can be at 
most four such tangents, a guartic can have at most eight real 
inflections. Zeuthen confines the name oval to a branch, having 
no real bitangent or inflexions: one with a single real bitangent 
he calls a unifolium; one with 2, 3, or 4 such bitangents, a 
bifolium, trifolium or quadrifolium. ‘Chus the external curve in 
Plicker’s figure is a quadrifolium; the four internal curves are 

unifolia. The figure, p. 45 (3), represents two bifolia; p. 46 (5), 
represents an annular quartic, quadrifolium with internal oval. 

248 (c). Zeuthen further shows by the method of Art. 125, 
Ex. 4, that the points of contact of any three of his bitangents 
lie on a conic; and further, that it is the same conic which 

passes through the contacts of all four bitangents. If then 
w, ©, Y, 2, represent four lines, and Va conic, the equation of the 
quartic must be of the form wayz=V*. Zeuthen’s analysis of 

the possible forms of quartics is made by discussing the different 
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positions which the intersections of the four lines with the conic 
can have with respect to the quadrilateral found by them. Thus 

when V meets all the lines in real points, he enumerates the 
following cases: (1), annular quartic, quadrifolium and internal 
oval; (2), quadrifolium and 2 ovals; (3), 4 unifolia; (4), trifolium, 

unifolium and oval; (5), bifolium, 2 unifolia and oval; (6), 2 
bifolia and oval; (7), 2 bifolia and 2 ovals; (8), bifolium and 

2 unifolia; (9), trifolium, unifolium and 2 ovals. He enumerates 

thus 36 cases in all, but the figures which he gives for the nine 
cases just mentioned sufficiently illustrate the rest, a very slight 

modification being enough to turn a unifolium into an oval, &e. 

It will be observed that the classification just made rests solely 

on projective properties and has no reference to the line infinity. 
In Art. 249 we state the principles on which these classes may 

be subdivided into species when the nature of the infinite branches 
is taken account of. 

248 (d). Zeuthen also applies his method of classification to 
nodal quartics considered as limiting cases of non-singular quartics. 

He enumerates and discusses the following cases: ‘a), conjugate 
points considered as limiting cases of ovals; (b), nodes which 

arise when in limiting cases of annular quartics the inner branch 
comes to meet the outer;—in neither of these cases are the 

Zeuthen bitangents affected; (c), nodes which arise when two 
mutually external branches come to meet; (d), which arise when 

a branch of even order breaks up into the intersection of two of 

odd order; (e), the case of two imaginary double points. In the 
cases where the Zeuthen bitangents are affected, the investigation 

is carried on by considering the forms represented by the equa- 
tion wxyz = V*, when V passes through the intersection of two 

of the lines, or when two of the lines coincide with each other. 

249. In order to see how quartics might be classified in 

respect of their infinite branches, we observe that the line 
infinity may meet a quartic, (2) in four real points, (4) in two 
real and two imaginary, (c) in four imaginary points, (d) in 
two coincident and two real points, (e) in two coincident and 
two imaginary points, ( 7) twice in two coincident points, these 
points being real, or (g) these points being imaginary, () in 
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three coincident and one real point, (¢) in four coincident 
points. Again, the cases (d), (e), (f), (g) would have to be 

further distinguished according as the line infinity when meeting 
the curve in two coincident points is simply a tangent or a line 

passing through a double point, which double point may be 

either crunode or acnode, cusp, or one of the special kinds above 
mentioned. Similarly in the case (A), the line infinity may be 

either an ordinary stationary tangent, or a tangent at a double 
point or cusp, or it may pass through a triple point, and in 
the case (¢) it may be either a tangent at a point of undulation, 

a tangent at a double point of the special kind, or a tangent 

ata triple point. Lastly, any of the points which count only as 
single intersections of the line infinity with the curve may be 
on the curve a point of inflexion or undulation, and where this 

happens a difference in the figure will result which would have 

to be taken into account in a complete classification of quartics. 

250. We have already shown (Art. 70) low to form the 

equation of the Hessian of a quartic, which is a curve of the 
sixth degree, intersecting the quartic in the twenty-four points 
of inflexion. We have also seen (Art. 92) that the equation of 

the reciprocal of a quartic is of the form se = 7%, where 8 
represents a curve of the fourth and 7’ of the sixth class, 

and the form of the equation shows that both are touched by 

the twenty-four stationary tangents. We have postponed to 
another chapter the solution of the problem to form the equation 
of a curve passing through the points of contact of double 
tangents of a given curve. It will there be shown that, 

in the case of the quartic, the equation of such a bitangential 

curve may be written in the form @=3H®, where © is the 
covariant AL” +&c., as in Art. 231; that is to say, L’ &e. 
represent the first differential coefficients of the Hessian, and A 
denotes bc—f", where a, 0, &c. are the second differential 

coefficients of U. In like manner ® denotes Aa’ +&c., as in 
Ex. 1, Art. 230. 

THE BITANGENTS. 

251. It is convenient to commence by studying a more 
general theory in which that of the bitangent is included. 

Let us then consider first the form UW=V", where U, V, W 
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represent conics; a form containing implicitly sixteen constants, 
and therefore one to which the equation of any quartic 

may be reduced in a variety of ways, as we shall after- 
wards more fully see. The form of the equation shows that 

U and W each touch the quartic in four points, namely, the 

points where they respectively meet V. Now we have already 
discussed (see Conics, Art. 270, &c.) the equation UW = V*, when 

U, V, W represent right lines, and the results hold good with 
the proper alterations when they represent conics. It is merely 
necessary to remember, that two conics represented by equations 
of the form 1U+yV+vW=0, instead of intersecting in a 
single point, intersect in four points; and that if we are given 

one point on a conic whose equation is to be of this form, 
' three other points are necessarily given; for if we have 
AU’ + pV’ +vW’=0, the conic A\U+uV+4+vW=0 will, it is 

clear, pass through the four points determined by the equations 
LS NS ieee 
oy Ww 
Conics just cited, that the quartic UW= V” may be considered 
as the envelope of the variable conic \°U+2\’\V+ W=0 
where A is variable, and which touches the given quartic in the 

four points determined by XU+ V=0, AV+ W=0. The two 

sets of four points in which any two of the enveloping conics 
touch the quartic lie on another conic, as appears by writing 
the given equation in the form 

(WU + 20V + W) (WU 4+ 2uV + W) = {frAp0+ (A+ pw) V+ WY’. 

In like manner, the properties of poles and polars may be 
extended to the curve under consideration. Through any point 
(or, if we please, we may say through any set of four points) 

may be drawn two conics of the system \°U+ 2XV + W, the two 
sets of four points of contact lying on a conic UW’4+ WU’-2VV’, 
which may be called the polar of the given point or set of 
points, and the symmetry of the equation shows that the polar, 

in this sense of the word, of any point on the latter conic 
will pass through the given point. Conversely, any conic 

aU+bV+cW meets the quartic in two sets of four points, 
through each of which sets a quadruply tangent conic may be 

drawn, the two intersecting in a set of points which constitute 
in this sense the pole of aU+bV+cW. 

It follows then from the discussion in the 
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252. It is useful now to recall the properties established 
(Conics, Art. 388, &c.) for a system of conics included in the 
equation 2U+BV+yW=0. In the first place, if this equation 

represents a pair of right lines, their intersection lies on a 
fixed cubic, the Jacobian of U, V, W; a curve which may 

also be defined as the locus of a point, whose polars with 

respect to all conics of the system aU+@V+yW meet in 

a point. If we consider two conics included in this system, 

the equation of any conic through their intersections must 

be of similar form; and hence, the intersection of each of 

the three pairs of lines joining the four intersections of 
the two conics must lie on the Jacobian. If the two conics 
touch, two of these three intersections coincide with the 
point of contact; and, therefore, if two conics of the system 

aU+8V++W touch each other, the point of contact lies on 
the Jacobian. 

Secondly, the system aU+8V+yW may be regarded as 

a system of polar conics of the variable point a@y with regard 

to a certain fixed cubic, which has for its Hessian the Jacobian 
of the system, and the equation of which can be formed when 
those of the three conics are given. 

Thirdly, if aU+S8V+yW represents a pair of right lines, 

all such right lines touch a curve of the third class, the Cayleyan 
of the cubic last mentioned. 

253. Hence then, in particular, since any enveloping 

conic U+2xXV+ W, and the conic through the four points 

of contact are each included in the form aU+BV+yW, 

if we draw the three pairs of lines connecting the points of 
contact of any conic enveloping UW=V", the intersections 

of each pair lie on a certain fixed cubic, viz. the Jacobian; 

and the lines themselves are all touched by a fixed curve of 
the third class, viz. the Cayleyan. 

Again, if the two conics \U+ V, XV + W touch each other, 
then the conic °U+2AV+ W, instead of touching the quartic 
in four distinct points, has ordinary contact with it twice and 

meets it once in four consecutive points. And from what we 
have just seen, this point of contact of higher order lies on the 

Jacobian. We infer then, that twelve conics of the system 

GG 
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vU+2XV+ W have this higher contact with the quartic, 
namely, the twelve passing each through one of the intersections 
of the Jacobian with the quartic. 

254. Six conics of the system °U+2XV+ W reduce toa 
pair of right lines; for the discriminant of this form being a 

function of the third degree in its coefficients will be one of 
the sixth degree in A, and therefore six values of \ can be found 
for which it vanishes. When an enveloping conic reduces to 

a pair of right lines, the four points of contact lie two on each 
line, and each line is therefore a double tangent to the quartic. 

It appears from Art. 249, that if ab, cd be any two of these 
six pairs of bitangents, the equation of the quartic may be 
transformed to abcd = V*, the eight points of contact lying on a 

conic V. ‘Thus we see that the form U+2AV-+ W includes 

six pairs of the bitangents of the quartic, these twelve bitangents 
all touching a curve of the third class, viz. the Cayleyan of 

the system, and the intersections of each pair lying on the 

Jacobian. So again, if the points of contact of any of these 
pairs of bitangents be joined directly or transversely, the joining 

lines also touch the Cayleyan, and the intersection of each pair 

lies on the Jacobian. This may be stated in a slightly 

different form by considering the cubic S, of which U, V, W 

are polar conics. ‘Then if the equation of a quartic is a function 

of the second degree in U, V, W, since the vanishing of such a 
function expresses the condition that the line cxU+yV+z2W=0 

should touch a fixed conic, it is easy to see that the quartic 

may be defined as the locus of a point whose polar with 

respect to S touches a fixed conic, or, in other words, the locus 

of the poles with respect to S of the tangents of that fixed 
conic; or, it will come to the same thing if it be defined 

as the envelope of the polar conics of the points of that conic. 

The double tangents of the quartic correspond to the points 
where the conic meets the Hessian of S. 

255. Let us. now consider any two of the bitangents of a 
quartic, which we take for the lines 2, y; then if we make 

2=0, the equation of the quartic is to reduce to a perfect 
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square, say (27+ ayz + by*)’, and if we make y=0, the equation 

is to reduce to, say (2°+cxz+dzx’)*. Hence, evidently the 

equation of the quartic must be of the form 

xy U= (2° + ay2 + by’ + cxz + da’)’ 5 

that is to say, of the form xy U=V’", which we have just discussed ; 
an equation which may also be written 

ay (VU + 2XV +4 xy) = (xy +rV)”. 

There are, as we have seen, beside the value \ = 0, corresponding 

to the pair of lines ay, five other values of A for which 

MU+2AV+ay will represent a pair of lines; and thus in 
five different ways the equation can be reduced’ to the form 
wayz=V". Hence, through the four points of contact of any 
two bitangents we can describe five conics, each of which passes 

through the four points of contact of two other bitangents. 
A non-singular quartic has 28 bitangents; and there are 

therefore 4 (28.27), or 378 pairs of bitangents; each of these 
pairs gives rise to five different conics, but each conic may arise 
from any one of the six different pairs formed by the four 

bitangents which correspond to that conic, hence there are in 

all & (378) or 315 conics, each of which passes through the points 

of contact of four bitangents of a quartic.* 

256. We have seen that each pair of bitangents combines 
with five other pairs to form a group of six pairs, the points of 

contact of any two of which pairs lie on a conic. It follows 

that the 378 pairs may be distributed into 63 such groups of six. 
The twelve bitangents of each group touch the same curve of 
the third class; and this is touched also by the lines joining 
directly and transversely the points of contact of each pair. 

The intersections of each pair of bitangents, and also those of 

each pair of joining lines, lie on a cubic. Corresponding to each | 

group there are twelve conics, each of which touches the quartic 

twice with ordinary contact, and once so as to meet it in four 

* Pliicker first noticed the possibility of bringing the equation of any quartic to 

the form wayz= V*, but he hastily inferred that the six points of contact of any 

three bitangents lie on a conic, and thence drew an erroneous conclusion as to the 

total number of conics passing through eight points of contact of bitangents (see 

the Theorie der Algebraischen Curven, p. 246). 
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consecutive points, the twelve points of higher contact lying 
on the cubic last mentioned. There being 63 groups, 756 such 
conics may in all be drawn. 

257. We shall show how to form a scheme of the 315 
conics, and for that purpose we denote provisionally the first 
26 bitangents by the letters of the alphabet, adding the symbols 

g@ and W to denote the other two. We denote by abcd the 
conic passing through the eight points of contact of the 
bitangents a, 6, c, d. If now abcd, abef, be two of the 315 
conics, the pairs ab, cd, ef belong to the same group, and from 
what we have seen, cdef will be another of the conics. ‘This 
may also be shown directly as follows. Let the equation of 

the quartic be abcd = V*, or 

ab (cd + 2NV + d’ab) = (V + Aad)’, 

and we can determine X so that cd+2AV+Nab=ef. Solve 
for V from this equation, and substitute in the equation of the 
quartic, when it becomes 

Nal’ + cd’ + ef” —2r*abed — 2M abef — 2cdef'= 0, 

or 4cdef = (cd + ef — r’ab)’, 

a form which proves the theorem stated. It appears thus, that 
given three pairs of lines which are to be pairs of bitangents 
of the same group of a quartic, the equation of the quartic will 

be of the form /)/(ab)+m/(cd)+nV(ef)=0, so that if 

two points were given in addition, a single quartic could be 

found satisfying the prescribed conditions. Corresponding to 

any group there are 15 conics, passing respectively through 
the points of contact of each two of the six pairs of which 

the group consists. ‘There would thus seem to be 63 x 15 = 945 
conics; but then every conic abcd is counted three times over, 
as belonging to the three groups ab, cd, &c., ac, bd, &e., 
ad, be, &c.; the total number is therefore 315 as before. 

258. Consider any conic abcd, then the group abd, cd, &c., 
and the group ac, bd, &c., can have no other bitangent common, 
the quartic being supposed to be non-singular. For example, 
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if abef be a conic of the first group, aceg cannot be a conic of 
the second. For (Art. 257) the equation of the conic through 
the points of contact of a, b,c, d may be written in the form 

dab + ¥ (ed — of )=0, 

and if aceg be another conic, this must be identical with the form 

1 
pac + . (bd — eg) = 0. 

From this identity we at once infer 

(Ab — pc) («- = d) sé (—f- 9) ‘ 

It follows that e, being identical with one of the factors into 
which the left-hand side breaks up, passes through the inter- 
section either of 6 and or of a and d. But in either case the 

point through which e is thus proved to pass will be a double 
point on 

4AMabcd = (Nab + cd - ef )’, 

and therefore the quartic could not be non-singular. 
In precisely the same way we see that if abef, acmn be two 

conics, there is an identity 

1 
(Ab — pic) (a- 5, 4) = 9-5 

and hence the diagonals of the quadrilateral efmn pass one 

through ad, the other through dc; or, in other words, the inter- 
sections of each pair of bitangents lie, according to a certain 

rule, three by three on right lines. When once a scheme of 
the 315 conics has been made, there is no difficulty in discri- 

minating which diagonal passes through ad and which through 

bc. For example, if it appears that aemu, afnv, aduv are conics 
of the system, we infer in like manner that the diagonals of 

the quadrilateral emfn pass through ad and uv; and thence we 
infer that ad lies on the line joining en, fm. Thus then consider 

any conic abed, this belongs to the three groups ab, cd, &c., 

ac, bd, &e., and ad, be, &ec., and it appears now that each of 

the sixteen quadrilaterals formed by combining one of the four 

other pairs belonging to the group ac, bd with a pair from 
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the group ad, be, will have a diagonal passing through abd, 
Now the pair ad belongs to five different conics, and therefore 
there are eighty quadrilaterals having a diagonal passing 

through ad. But it will be found, as we have intimated, that 
these quadrilaterals may be distributed into pairs having a 
common diagonal; hence, through each of the 378 points ab 

can be drawn 40 lines, each passing through two others of 
these points, and there are in all 5040 such lines. 

259. We are now in a position to form a scheme of the 

315 tangents, in which nothing but the notation shall be 

arbitrary. Commence by writing down the group ad, cd, ef, gh, 

aj, kl; then since the groups ac, bd; ad, be can have no 

bitangent common with the preceding nor with each other, 

these groups may be written, ac, bd, mn, op, qr, st; ad, be, wv, 
we, yz, dvr. Proceed now to write down the group ae, df; 

this must include no bitangent from the group ad; but in each 

term one of the bitangents from the group ac will be combined 
with one from the group ad. Now since it was free to us 

to write down the pairs of each group in any order we pleased, 

it is a mere matter of notation, and does not introduce any 

geometrical condition, if we take this group to be ae, df, mu, 

ow, gy, sp. In like manner, it is a mere matter of notation to 

suppose that the bitangents have been so lettered, that ag and 
mx, at and mz, ak and my shall respectively belong to the 

same group. ‘This being assumed, it will be found that the 

group af, be is necessarily nv, px, rz, ty, and we can thus 

proceed, step by step, to write out the whole system. A table 
of the 315 conics was accordingly given in the first edition, 

but I do not occupy space with it now, because an algorithm 

has been given by Hesse (Crelle, 1855, XLIx, 243), and more 

minutely discussed by Professor Cayley (Credle, 1868, LXvIII, 

176), which exhibits in an easily recognizable form the mutual 
relations of the 28 tangents. Hesse’s method introduces 
considerations from the geometry of three dimensions. He 
equates to zero the discriminant of «U+8V+yW where 
U, V, W denote quadric surfaces. ‘This discriminant being a 
function of the fourth degree in a, 8, y, if these quantities 

be regarded as variables, the equation denotes a plane quartic. 

disth, a ne heneee 
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But for any value of a, 8, y for which the discriminant vanishes, 
aU+8V+W denotes a cone, so that to every point on the 

plane quartic corresponds a point in space, namely, the vertex 
of this cone; and Hesse’s method connects the double tangents 

of the plane quartic with the lines connecting each pair of 8 
points in space which are the intersections of three quadric 

surfaces. We make no use here of any principles of solid 
geometry, but merely borrow the notation which Hesse’s 

method suggests.* 

_ 260. Take then eight symbols 1, 2, 3, 4, 5,6, 7,8. Their 

combination in pairs gives us 28 symbols 12, 13...78, which 
we use to denote the 28 bitangents. ‘This notation, the symbols 
being properly applied to the 28 bitangents, enables us correctly 
to represent their geometrical relations, though it fails com- 

pletely to exhibit the symmetry of the system. In fact, the 

notation might suggest that the bitangent 12 was related in a 
different manner to the bitangents 13, 14, &c., and to the 

bitangents 34, 56, &c., whereas actually there is no geometric 
difference between the relations of any pair of bitangents. 

So again we suppose the symbols so applied, that 12, 34, 56, 78 
shall denote bitangents whose 8 points of contact lie on a 

conic. The same property will then belong to every tetrad 
of bitangents represented by a like set of duads; that is, 

by any four duads containing all the eight symbols. But 

if we count, we shall find that we can only make 105 arrange- 

ments of the 8 symbols into sets, such as 12, 34, 56, 78. 
The remaining 210 conics correspond to four bitangents, 
whose symbols are such as 12, 23, 34, 41; that is to say, 

the duads are formed cyclically from any arrangement of 
four of the eight symbols, and it will be found that we 

* Another mode of connecting the theory of 28 bitangents with Solid Geometry 

is used by Geiser, Mathematische Annalen 1. 129, as follows: From any point on a 

cubic surface can be drawn a quartic cone touching the surface. This will be non- 

singular, its bitangent planes being the tangent plane to the cubic at the vertex, and 

the planes joining the vertex to the 27 lines on the surface. Zeuthen shows that his 

classification of quartics with regard to the reality of their bitangents leads by a 

different process to the results obtained by Schlafli in classifying cubic surfaces with 

respect to the reality of their right lines. 



232 . THE BITANGENTS. 

can have 210 such tetrads. Thus then the group belonging 
to the pair 12, 34, consists of 56, 78; 57, 68; 58, 67; 13, 24; 

14, 23; and the group belonging to a pair such as 12, 13, is 
24, 34; 25, 35; 26, 36; 27, 37; 28, 88. Thus the notation 
shows completely how the bitangents are to be combined 

in groups. It suggests, however, that the 105 conics of the 

form 12, 34, 56, 78 differ in their properties from the 210 

of the form 12, 23, 34, 41. This is not the case, the whole 

315 tetrads forming an indissoluble system. 

261. Professor Cayley remarks that Hesse’s researches 
establish the following general rule: A bifid substitution 

makes no alteration in the geometrical relations of the bitangents 

denoted by any set of symbols. What is meant by a bifid 

substitution is, that writing down such a symbol of substitution 

as 1234°5678, we interchange everywhere the duads 12, 34; 13, 

24; 14, 23; and again, 56, 78; 57, 68; 58, 67; but leave 

unchanged such duads as 15, 36, where one of the first set 

of symbols is combined with one of the second. ‘The number 

of possible bifid substitutions is 35, or, if we add unity (viz. 
no alteration of any duad) the number is 36. 

For example, now if we apply the bifid substitution 
1234°5678 to the pair 12, 34, we get the same pair in opposite 

order; if we apply it to 12, 13, we get 34, 24, a pair of 
the same type as 12, 13; if we apply it to 12, 15, we 

get 34, 15, a pair of apparently a different type, but not 
different in geometrical relations. Thus, then, if we apply 

the same bifid substitution as before to the tetrad 15, 67, 
28, 34, which is one of the set of 105 already referred to, 
we get 15, 58, 82, 21, which is one of the set of 210, 

and which, according to the rule, possesses the same geometrical 
properties. 

262. Professor Cayley has exhibited in the following table 
the geometrical relations of the bitangents, taken singly in 

twos, threes, or fours, and the number of terms belonging to 
each type of arrangement of the symbols. 
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Representattive 
term. Wo. of terms. Geometrical character. 

£12 28 28 | Bitangents. 

4 ae a 378 | Pairs of bitangents. 

LI | 12.23.34 Hag} 43 &o Triads of bitangents such that 

II] | 12.34.56 840 6 points of contact are on conic. 

A | 12.23.31 56 oe 
Vi | 12.23.45 1680) 2016 Triads such that 6 points of con- 

NY 12.18.14 aunt eae contact are not on conic. 

III|_ | 12.34.56.78 | 105) | Tetradsof bitangentssuch that the 
(] | 12.23.34.41 sat 8 points of contact are on conic. 

‘WV | 12.84.56.67 | 2520 
12.34.45. 

7 19 3 oy . ie Sesah Tetrads such that 6 out of the 

NV ; . ‘ > 5 .: os Salk 8 points of contact are on conic. 

W\ | 12.13.14.45 | 3360 

IA | 12.34.45.53 | 560 . 
\V& | 12.13.14.15 | 280|  go49 Tetrads such that no 6 points of 

I\VV | 12.34.35.36 | 1680 contact are on conic. 

VV | 12.13.45.46 | 2520 | 20475 

In the above, for greater clearness, a geometrical symbol 
has been attached to each term, viz. the symbols 1, 2, 3, 4, 
5, 6, 7, 8 being regarded as points, when any two of these 

are combined into a duad, this is indicated by a line being 

drawn to join the two points; thus q is the symbol of the term 
12.23.31. This is very convenient; we can for instance, by 

mere inspection, see that the symbol of any partial set in the 

set of 15120 terms, contains as part of itself one of the 
symbols ||, ||, viz. that there are among the 8 bitangents 
six such that their points of contact lie in a conic; whereas, 

contrariwise in the symbols of the partial sets belonging to the 

set of 5040, no one of these symbols contains as part of itself 
either of the symbols |||, U. 

HU 
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To the foregoing may be joined the following two groups 
of hexads of bitangents: 

Representative term No. of terms 

A /\ | 12.23.31.45.56.64 280 
WY | | 12.34.35.36.37.38 63 

Y V | 12.138.14.56.57.58 560 

<> | 12.23.34.45.56.61 1680 

[1 | 12.23.31.14.45.51 140 

5040 

VV | | 12 34 35 36 67.68 2520 

These 1008 and 5040 hexads have been studied by Hesse 
and Steiner as bitangents whose twelve points of contact lie 
on a proper cubic, the former set having no six contacts 
on a conic, but the twelve points of contact in the latter 
case being divisible into two sets of six lying each on a 
conic. It may be added, that the six tangents of each of 
the 1008 hexads all touch the same conic, as will appear 
from Aronhold’s investigations, which will be presently given. 
The six tangents of each of the 5040 hexads may be dis- 

tributed into three pairs, whose points of intersection lie on 
a right line (see Art. 258). 

263. We conclude this discussion of the bitangents with 

an account of the method by which Aronhold has shewn 

(see Berlin Manatsberichte, 1864, p. 499), that when seven 

arbitrary lines are given, a quartic can be found having these 

lines as bitangents, and of which the other bitangents can be 
found by linear constructions. The method depends on pro- 

perties of a system of curves of the third class having seven 
common tangents, but it seems convenient to state them first 
in the reciprocal form with which the reader is more familiar, 
viz. as properties of a system of cubics passing through seven 

given points. (1) Consider any one cubic of the system, then 
if the eighth and ninth points in which it is intersected by any 
other cubic of the system be joined, the joining line passes 
through a fixed point on the assumed cubic, viz. the coresidual 
of the seven given points (Art. 160). (2) Through any assumed 
point 8 can be described one and but one cubic on which 
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this point shall be the coresidual of the seven given points. 
For all cubics of the system through the point 8 pass through 

another fixed point 9, and, by definition, the coresidual is the 
point where the line joining these points meets the curve again. 

If, therefore, the coresidual is to coincide with the point 8, 
the cubic must be that one which is determined by having the 

line 89 as its tangent at the point 8. (3) Four cubics of the 

system can be described to touch a given cubic of the system, 

the points of contact being obviously the points of contact of 

tangents drawn to the given cubic from the coresidual point 

onit. (4) If the points 8,9 coincide, that is to say, if cubics 

of the system touch, the envelope of the common tangent 89 
is a curve of the fourth class. For consider how many such 

lines can pass through any assumed point P. Suppose a cubic 

described through P, and through the points 8, 9, then, by 
definition, P is the coresidual point on that cubic, and by (2) 

this cubic having P for the coresidual is a determinate known 
cubic. We see then, from (3), that the envelope in question 
is of the fourth class, the four tangents from any point P being 
constructed by finding the cubic which has P for its coresidual, 
and drawing the four tangents from Pto that cubic. (5) The 

point P will be a point on the envelope curve, if two of the 
tangents drawn from it coincide; but from the construction 

just given, it appears that this can only happen when the 
curve having P for its coresidual has a node; for in this case 

two tangents coincide with the line joining P to the node. 

Hence the envelope we are considering may also be defined as 
the locus of the coresidual of the given system of points on all 

the nodal cubics of the system. (6) If the cubic through the 
seven points break up into a conic through five of them, and a 

line joining the other two, it has two nodes, namely, the inter- 
section of the line and conic. Any other cubic of the system 

meets this complex cubic in two other points, one on the line, 
one on the conic, and the coresidual is the point P where the 

line joining these two meets the conic again. In this case, 

then, P is a double point, the two tangents at it being the lines 
joining it to the intersections of line and conic. Now seven 
points can be divided in 21 different ways into a system of 

two and of five. The curve we are considering has, therefore, 
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21 double points, one on each of the 21 conics determined 
by any five of the given points. (7) In addition, the seven 

given points themselves are double points on the same curve. 

For a cubic can be described through six of the given points 
and having the remaining point for a double point, and it is 

easy to see that the double point is the coresidual for that 

cubic. The four tangents from it to the cubic reduce to two 
pairs of coincident tangents, namely, the tangents to the cubic 

at the double point. The envelope curve, therefore, has 28 

double points, 7 of them being the seven given points, and 

the pair of tangents at each of these seven points being the 

same as those of the cubic of the system having that point 
for a double point. 

264. Reciprocally, then, if we have a system of curves of 

the third class touching seven given lines, and consider any 

one curve of the system, the eighth and ninth tangents common 

to it with any other curve of the system, intersect on a fixed 

tangent of the selected curve, which may be called the core- 

sidual, for that curve, of the seven given tangents. (2) Cor- 

responding to any arbitrary line, there is a curve of the system 
having that line as the coresidual for it of the given tangents, 

(3) Any fixed curve of the system is touched by four others, 

the points of contact being the points where the coresidual 
tangent again meets the curve, which, being a general curve 

of the third class, is of the sixth degree. (4) The locus of 
points where two curves of the system touch is a curve of 

the fourth degree, the points where any line meets that locus 

being the four points where it meets the curve for which it is 

a coresidual tangent. (5) If the curve of the third class have 

a bitangent, the coresidual for that curve touches the locus, 

the point of contact being the intersection of the coresidual with 
the bitangent. (6) If the curve consists of a conic touching 
five of the given tangents together with a point, the intersec- 

tion of the other two tangents; the coresidual for that system 
will then be a bitangent to the locus. There will be 21 such 

bitangents. (7) In addition, the seven given lines themselves 
are bitangents, the points of contact being the same as those 
in which any of them is touched by the curve of the third 
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elass having that line for a bitangent and the six other given 
lines as ordinary tangents.* 

265. We can now, as has been stated, from the seven 
given bitangents find the rest by linear constructions. We 

have in fact to construct the coresidual tangents for the several 

systems 12345, 67, &c., where 12345 denotes the conic touching the 
first 5 lines, and 67 is the point of intersection of the other two. 

Now the two systems 12345, 67 and 12346, 57 have obviously 

seven common tangents, and the remaining common tangents 

are the tangents to 12345 from the point 57, and to 12346 from 

67. But Brianchon’s theorem enables us, when one point on a 

tangent to a conic is given, to find by linear constructions 

the remaining tangent. ‘These two tangents, then, having 
been constructed, and their intersection found, the remaining 

tangents drawn from it to each of the two conics in ques- 

tion will be the two required coresiduals, and therefore two 

of the bitangents. Or otherwise, if we consider the three 

systems 12345, 67; 12346, 57; 12347, 56, and determine 

in the manner just described the remaining eighth and ninth 

tangent common to each pair of systems, the three intersec- 
tions of these pairs of tangents will, when joined, give three 

of the required bitangents. ‘The bitangent which is the core- 

sidual for the system 12345, 67 may be called the bitangent 

(67); and thus the twenty-one bitangents may be denoted by 

combinations of the symbols 1, 2, 3, 4,5, 6,7. In addition we 

have the seven given lines; and if introducing for symmetry 

a new symbol 8, we denote these (18), (28), (38), (48), (58), (68), 

(78), we are led by Aronhold’s method to an algorithm identical 
with that of Hesse. 

266. The intersection of the eighth and ninth tangents 

common to any two curves of the system is a point through 

* The point of contact of each of the seven given lines with the locus being thus 

given, we have fourteen points on the quartic, which is thus completely determined, 

and there is but one quartic satisfying the prescribed conditions. There may, however, 

be several quartics having the seven given lines as bitangents; but the one deter- 

mined by Aronhold’s method has them as unrelated bitangents, viz. such that no 
- three of them belong to the same group. 
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which passes the coresidual tangent for each of these curves. 
Consider, then, the complex cubic systems 12, 34567 5; 34, 12567, 
and one of the common tangents is the line joining the points 
12, 34; that is to say, in the algorithm just referred to, the line 

joining the intersections of the lines (18), (28); (38), (48); and 
we now see that this line passes through the intersection of the 

coresiduals of the two systems under consideration, that is to say, 
through the point (12), (34). In this way we get the theorem 
already proved (Art. 258), that the intersections of the lines 

(18), (28); (88), (48); (12), (84), are in a right line; and 

Art. 262 shows that by an ordinary or bifid substitution we 

can find 5040 lines possessing the same property. 

267. We conclude with Aronhold’s algebraic investigation 
of the equation of the quartic generated according to his method. 
Let us use tangential coordinates a, 8, y; and let u, v, w be 

any linear functions of them, aa + 68 + cy, &c., then the equations 

Bv—yu=0, yo- aw=0, au— Bv=0, 

denote three conics having four tangents common, and of which 

each touches one of the sides of the triangle of reference. And 

a(Bv—yw)=0, B(yw—au)=0, y (au — Bv)=0, 

denote three curves of the third class having seven common. 
tangents, viz. the four common to the two conics, and the sides 
of the triangle of reference. Any other cubic having the same 
7 common tangents will be of the form 

w/a (Bo — 0) + vB (yo — au) + wy (a — Bo) =0, 
where uw’, v', w’ are arbitrary constants, which are supposed 
to be of the form aa’ + 68’ + cy’, &c., where a’, 6’, 7 are the 
coordinates of an arbitrary line. Writing the above equation 
in the form 

u, u, By 

v, 8. ga |= 0, 
w, w, a8 

it is evidently satisfied by the coordinates a’6’y’, which therefore 
are those of a tangent to this curve. And further, this tangent 
is the coresidual for that curve ; for we shall find the other two 

tangents through any point in that line, by substituting in the 
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above Aa’+ wa” for a, &c. The equation then is divisible by yp, 
and after division becomes 

7 U ” Be 4 ’ ” Fe "oy? ’ ” UPL 
u,u, PRY u,w, By +B U,U; 

2 Ud ” ee A U ” CFR g noe 2 , ” if 208 a 

WV, V, Ye |+AMI YL, VY, ya +yYa tw | Y, Vv, ya |=0, 
’ ” Uj Ul U ” ‘gol wor ! ” "won w,w,ap w,w',aB"+a'B W,W,a 

and the symmetry pf the equation shows that the pairs of 
tangents are the same which can be drawn from the intersection 

of the lines a’8’y’, a’ By” to the curves 
, 4, 

u, wy By U, uy By 
/, A 

V, UV, ya | =0, v,v, ya |=0. 
, 4? w,w,ap w, w’, a8 

Thus then the tangents a’§’y’, «By being respectively 

the third tangents drawn to each curve from the intersection 

of the eighth and ninth tangents common to both, are, by 

definition, the coresidual tangents. The two curves will 
touch provided that the quadratic equation in A, yp, has 

equal roots; or if we write the coefficients of that quad- 
ratic P, Q, R, provided we have @’=4PR. If we denote by 

1s ee PRS 4 6 Ped X, Y, Z the minor determinants vw’ —v'w’, wu’ —w'v, 
uv’ —u''v’, we have 

y om ty X 4. fa Y+ a’ BZ, 

Q a (B’ry” 4 B’y) yu (y0” + ofa) yx (a B” 4 a’ B’) Z, 

R ou Bie” sy + oy” of” 4 *. a” B” VA 

, Now for B’y” — B’9/, oa” — ya’, a RB” — a” — a8’ we may write 
X,Y, 2, these being the point-coordinates of the point of inter- 
section of the two lines a 8’9/, a’B’y". The equation Q@’=4PR 

is then equivalent to 

ve X? + y? VY? + 2°Z" —2yz2VYZ—22xZX —2ayXY=0, 

or V(e2X) + V7 (y¥)+ 7 (2Z) =0. 

It will be remembered that X stands for v’w” —v’w’, and if we 
put for these their values 

v souk ao of bp’ ." cy’, w sais aa + bp’ +} ey’, 

a’ sine a a’ = b’B” + cy”, w’ oni ao” be 6” B” + oy; 

we have X=(b'c” —b"c') w+ (ca” — ca’) y+ (wb” —a’S’) 2. 



240 BINODAL AND BICIRCULAR QUARTICS. 

Similarly Y= (0c — be’) x + (c’a— ca’) y+ (ab —ab") 2, 

Z=(be —U'c)x+(ca —ca)y+ (ab —ab )z. 

Thus X, Y, Z represent known lines. They are in fact the 
sides of the triangle whose vertices are represented by w, v, w. 
It will be observed that the coefficients in X, Y, Z are the 
constituents of the determinant reciprocal to that formed by 

the coefficients of u, v, w; so that if X, Y, Z had been originally 

given, wu, v, w would be found by similar formule. 

268. The same investigation would hold if the equations 

of the three conics had been law=mBv=nyw. The values 
of X, Y, Z would remain as before, but we should have 

P=mnf'y X + nly'o¢ Y + lmd’ BZ, &e., 

and the equation would be 

V (mnxX) + (nly Y) + / (lmzZ) =0. 

This is the most general equation of a quartic having three 
given pairs of lines x, X, &c., as pairs of bitangents of the same 

group. If we were given a seventh bitangent, then /, m, n 
would be completely determined by the equations supposed 

to be satisfied by the coordinates of that bitangent, viz., 

la’u’ =m’ =ny'w’, whence mn, nl, ln are respectively pro- 
portional to au’, Pv’, yw’. Thus, then, if we are required 

Se ae ee Tee eT eee eT eT ct ee 

to describe a quartic having seven given. lines as bitangents, 

besides the one quartic determined (Art. 265) on the supposition 

that no two of the tangents belong to the same group, we 
can describe (7 x 15=) 105 others according to the method of 

this article, by leaving out any one of the seven and dividing 

the six remaining into three pairs, which can be done in fifteen 
_ different ways. 

BINODAL AND BICIRCULAR QUARTICS. 

269. Except in connection with the bitangents, the theory 
of non-singular quartics has been little studied, and what else 

we have to state on this subject will be given in the concluding 
section of this chapter, that on the Invariants and Covariants. 
In order to complete the theory of the bitangents, we ought 

to consider the modifications which that theory receives when 
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the curve has one or more double points. ‘The case, however, 
where the quartic has but one node has received no attention, 
and will not be here discussed. Quartics with two nodes, in 
the case where these are the circular points at infinity, have 
been extensively studied under the name of bicircular quartics,* 
and some of the principal results obtained will be here given. 
All the projective properties obtained for bicircular quartics may 
of course be stated and proved as properties of binodal quartics, 
but we shall find it convenient to give several of them in their 
original form, as the reader will have no difficulty in making 
the proper generalization. Quartics having the two circular 
points as cusps have also been much studied under the name of 
Cartesians,t the properties of which may similarly be gene- 
ralized and stated as properties of bicuspidal quartics. If a 
quartic have one of the circular points as a cusp and the other 
as a node, it cannot be real; consequently this case has been 
little studied, and therefore we have little to state as to the 

properties of quartics having one node and one cusp. 

270. From each of the two nodes of a binodal quartic may 
be drawn four tangents to the curve (Art. 79), and we shall 
now prove that the anharmonic ratios of these two pencils are 
equal. The general equation of a quartic having for nodes 
the intersections of the line 2 with the lines a and y is 

y+ Qayz (lee + my) + 2° (ax*+ by’+ cz*+ 2fyz + 2gza + 2hxy) = 0. 

The pairs of tangents at the nodes are given by the equations 

xv’ +2mxz+b2"=0, y’ + 2lyz + az" =0, 

and we lose nothing in generality by supposing / and m to be 
both =0, which is equivalent to assuming that for the lines a 

and y have been taken the harmonic conjugate, with respect to 

the pair of tangents at each node, of the line z which joins the 
nodes. Arranging now the equation of the quartic 

y” (x? + bz*) + Qy2? (fz + ha) + 2° (ax* + 2gzu + cz”) =0, 

* See, in particular, Dr. Casey’s paper, Transactions of the Royal Irish Academy, 

vol, XXIV. p. 457, 1869. 

t See Chasles’ Apercu Historique, p. 350; Quetelet, Nowveaue Mémoires de 
Bruxelles, tom, v.; Cayley, Liouville, vol. XV. p, 354, 

bE 
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we see immediately that the four tangents from the node zz are 
given by the equation 

(x” + bz”) (ax* + 2gzu + cz”) =z’ (fz + hz)’, 

or ax*+ 2gx°2 + (c+ ab— h’) x’z"+ 2 (bg —hf) va + (be — f*) *=0. 

The invariants of this quartic are 

I= abe —af? — bg’ + foh + py (e+. ab —h’)’, 

6J = (abe — af* — bg’ — 4 fgh) (c+ ab — h*) — 8h? (af* + bq’) 

+ 3abfgh + 3%9° — 35 (ec +ab— hb’). 

Now these values are symmetrical between a and 6, f and g, and 
we see therefore that they are the same as the invariants of the 

quartic which corresponds to the pencil of tangents from the 
node yz, and that therefore the two pencils are homographic. 

271. It follows at once, as in Art. 168, that a conic can be 
drawn passing through the two nodes, and through the four 
points where each of the tangents from one node meets the 
corresponding tangent from the other; and further, since there 

are four orders in which the legs of the second pencil can be 
taken without altering the anharmonic ratio, that the sixteen 

points of intersection of the first set of tangents with the second 

lie on four conics, each passing through the two nodes. When 

the quartic is bicircular, that is to say, when the two nodes 

are the circular points at infinity, the theorem becomes that the 
sixteen foct of a bicircular quartic lie on four circles, four on each 

circle.* It is to be noted that any one of the conics through 
the two nodes may degenerate into a right line together with 

the line joining the nodes, so that four of the foci of a bicir- 
cular quartic may lie on a right line. 

272. We have already stated that the equation of any 
quartic may, in an infinity of ways, be thrown into the form 

aU*+bV"*+cW* + 2fVW+ 2qgWU+ 2hUV=0, 

where U, V, W represent three conics. If the quartic is non- 
singular, the three conics cannot have a common point, since it 

* In point of fact, this theorem, which is due to Dr. Hart, was first obtained, and 

the theorem of Art. 270 thence inferred. The proof given in Art. 270 is in substance 

the same as Professor Cayley’s. See his Memoir on Polyzomal Curves, Edinburgh 

Trans., 1869. 
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is obvious that any point common to U, V, W must be a double 
point on the quartic whose equation we have written. In the 
cease of binodal quartics, U, V, W may be taken as three conics 
passing each through the two nodes, and when these nodes are 

the circular points at infinity, U, V, W are three circles. We 
lose nothing in generality by confining our attention to the 

equation UW= V?, to which, as in the theory of conics, the 

preceding equation may in a variety of ways be reduced. It 

may, for instance, be written 

(aU+gW+hV) = (hk? — ab) V* +2 (gh—af) VW + (g’- ac) W*, 

where the right-hand side of the equation breaks up into factors. 
Bicircular, therefore, and binodal quartics may be discussed 

by considering the form UW= V’, and by regarding the quartic 
as the envelope of 7U+2AV+W=0, where U, V, W are in 

the former case circles, and in the latter case conics passing 

through the two nodes; and it is only necessary to examine 

how this limitation modifies the results already obtained, 
Arts. 251, &c. 

273. When three conics have two points common, their 

Jacobian breaks up into the line joining them, together with a 
conic passing through the two points; and when the three 

conics are circles, the Jacobian conic is the circle which cuts 

them at right angles (Conics, Art. 388, Ex. 3). The Jacobian 
being a determinant, the Jacobian of three conics whose equations 
are of the form aU+ 8BV+yW=0 is the same as that of U, V, 
W; and when U, V, W are circles, all circles included in this 
form have a common orthogonal circle. 

If U, V, W are circles, the coordinates of whose centres 
are 2L,Y,2,, LY%., ,Y,2,, the coordinates of the centre of 
U+2XV + W will be proportional to 

n'a, 5 2r2, + sy rv 1 ox 2rY, Ys) A a 22, 3 3 @s) 

and the locus of the centre, as % varies, is evidently a conic. 
Hence the quartic UW= V* may be regarded as the envelope 

of a circle whose centre moves on a fixed conic* /, and which 

* Dr. Casey has shown that the foci of this fixed conic are the same as the double 

foci of the quartic. In fact, if a tangent from a point J meets the conic F in two 

consecutive points P, P’, the line /P will be a common normal to the two circles whose 

centres are P, P’, and which pass through J, If then J be one of the circular points at 
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cuts a fixed circle J orthogonally. And in the more general 
case of the binodal quartic, where U, V, W are conics through 

the fixed points, UW — V* is the envelope of the variable conic 
U+2XV+ W, passing through the fixed points; all the 
variable conics having a common Jacobian conic, and the pole, 
with regard to any, of the line joining the fixed points moving 
on a fixed conic £. 

274. The nature of the quartic will be modified if any 
special relations exist between the conic # and the Jacobian. 

Thus, if / touch the Jacobian, the point of contact will be an 
additional node on the quartic, and if / touches the Jacobian 

twice, then each point of contact will be a node; that is, the 
quartic will break up into two conics, each passing through the 
fixed points. So if # pass through one of the fixed points, that 
point instead of being a node of the quartic will be a cusp, and if 
F' pass through both of the points both will be cusps, and we 
have a bicuspidal quartic. Thus, in the case of bicircular quartics, 
if the conic F' which is the locus of centres be a circle, the quartic, 
having the points at infinity as cusps, will be a Cartesian. 

If the conic £ touch the line joining the points, that line 
becomes part of the quartic. Thus, in the case of bicircular 

quartics, if the conic / be a parabola, the quartic will degenerate 
into a circular cubic, together with the line at infinity. 

If the centres of U, V, W lie on aright line, the Jacobian 
reduces to the line joining the centres. 

275. Let us now return to the equation UW=V*. We 
have seen that there are in general six values of A, for which 
WU+2XV+W breaks up into factors, and that the right lines 

represented by the several factors are bitangents to the quartic 
UW=V*. Now when JU, V, W all pass through fixed points, 
wU+2XV+W, which denotes a curve passing through the 
same points, must, if it denote right lines, denote two lines 
passing one through each of the points, or else the line joining the 
points together with another line. In the former case the two 

infinity, it follows that the tangents from J to F are normals, and therefore tangents 

to the quartic at J, The same argument holds, whatever be the curve /, or whatever 

the law according to which the circles are described. Thus, the single foci of any 

curve are double foci of any parallel curve, 
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lines are not proper bitangents to the quartic UW=V", but 
ordinary tangents passing through a node (any line passing 

through a node being improperly a tangent) ; in the latter case 
one of the two lines is a proper bitangent, the other is the line 
joining the nodes. Of the six values of A, only two correspond 

to the case of proper bitangents; for if Z be the chord common 
to U, V, W, then V and W will be of the forms respectively 

aU+IM, bU+LIN; and ’U+2\AV+ W will have Z for a 
factor if X be one of the roots of X*>+2Aa+5=0. Thus, in the 
case of bicircular quartics, when U, V, W all represent circles, 
there are evidently two values of X for which the coefficient of 
x+y" vanishes in 7U+2XV+ W=0, and for each of these 
values the equation denotes a right line bitangent to the quartic 

UW=V*. Or we may see the same thing geometrically 
from the construction in Art. 273. Ifthe circle WU+2’V+W 

becomes a right line, its centre passes to infinity, and must there- 
fore be the point at infinity on one of the two asymptotes of the 
conic /’; and the two bitangents are therefore the perpendiculars 

let fall from the centre of the Jacobian on these asymptotes. 

In each of the four other cases where the discriminant of 

MU+2XV+ W=0 vanishes, the equation denotes a pair of 
tangents to the quartic, passing each through one of the circular 
points at infinity, and whose intersection therefore is a focus of 
the quartic; or, what comes to the same thing, A’ U+2A V+ W is 

an infinitely small circle whose centre is the focus, and which 

has double contact with the quartic. If one of two orthogonal 

circles reduce to a point, that point must lie on the other circle; 
hence if YU+2AV+ W reduce to a point, that point must be 
on the Jacobian circle of U, V, W. We have, therefore, obvi- 
ously four foci, viz. the intersections of this Jacobian circle with 
the conic /, which is the locus of centres of circles included in 
the equation 1°U+2XV+ W=0, and which may, therefore, be 
called a focal conic. 

_ The four points in which the Jacobian circle meets the quartic 
will be points in which circles of the system °U+2XV+ W 
meet the quartic in four consecutive points (Art. 251). 

There are four ways in which the equation of a given 
_bicircular quartic can be reduced to the form UW=V’*; cor- 

responding to each there are four foci, two bitangents and four 
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cyclic points, or points on the eurve where four consecutive 
points lie on a circle (see Art. 114); the quartic having in all 
16 foci, 8 bitangents, and 16 cyclic points. 

276. If one of the foci of the quartic be taken as origin, 
the equation of the quartic must be of the form (27+ y")W=V?, 
where V and W represent circles; and the quartic is the 
envelope of 2*+y°+2\V+W=0. Besides the value \=0, 
there are three other values of A, for which this variable circle 
reduces to a point; and one of these values must be real. We 
can then write the equation 

(a? + y”) (a? +y°+2AV4+NW)= (2? +y?+rAV), 

or, in other words, when we have a focus we can at once bring 
the equation of the quartic to the form AB=V”", where A and 
B are point-circles. Bicircular quartics may be divided into 

two classes, according as the other two values of A, for which 
A+2XV+d’B reduces to a point-circle, are real or imaginary, 

or, in other words, according as the four real foci do or do not 
lie on acircle. In the former case let C denote one of the two 
point-circles, and, as in Art. 257, eliminate V between the 

equations AB=V*, A+2AV+NB=C, and we see that 
the equation of the quartic may be written in the form 
L/(A) +m /(B)+n /(C) =0, that is to say, that the quartic is 
the locus of a point whose distances from three fixed points 
are connected by the relation /p + mp’ + np” = 0. 

The condition that 1/(A)+m/(B)+n/(C) shall be touched 
2 2 2 

by AA +p46+4+ v7 is (Conics, Art. 130) : + oe + —= 03 and 

when A, B, C are point-circles, and a, 0, ¢ the lengths of 
the lines joining the points, it is easy to verify that the dis- 

2 2 2 

criminant of AA +pBb+vC vanishes if ~ + + =0. Tis 

two equations just given determine A, pm, v, and therefore the 
fourth focus. 

We have seen (Conics, Art. 94) that if A, B, C, D be four point- 
circles, we have identically bed. A+ cda.B+dab.C0+ abe. D=0, 
where abc is the area of the triangle whose vertices are a, 0, c, &e. 

Hence, i, mu, v are proportional to the areas of the triangles formed | 
by the fourth focus and each pair of the other three foci. In the 
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case where the three points a, 0, c are in a right line, it can 

easily be proved that the squares of the distances from any point 
of four points on a right line are connected by the equation 

A B C D 
ab.ac.ad ba.bc.bd ca.ch.ed* da.db. de 

Hence we see that the reciprocals of 2, u, v are proportional 
to ab.ac.ad, ba.be.bd, ca.ch.cd, and that we have the equation 

Pab.ac.ad+m’ba. be.bd+n'’ca.ch.cd=0. 

If we had Cab.ac+m’*ba.be + n’ca.cd=0, 

the fourth focus would be at infinity, and the curve would be a 
Cartesian. 

= 0. 

277. When we are given four concyclic foct of a bicircular 

quartic, two such quartics can be described through any point, and 

these cut each other at right angles. If we are given the fourth 
focus, we are given the values of A, uw, v, for which AA+pB+vC 
reduces to a point; and evidently two systems of values of 

2 2 2 

l,m, n can be found to satisfy the equations “Gs my + ~ = 0, 

lp + mp’ + np” =0, where p, p’, p” or (A), /(B), V(C) denote 
the distances from the three foci of a point on the curve sup- 
posed to be given. 

T'wo quartics 

1 /(A)+m /(B) +n (2) =0, U f(A) +m! V(B)+n' /(C)=0 
will be confocal if 

a * (mn it Sa Mm” n°) + b? (n ‘d oe nT’) - Cc (lm? — 1”m*) =(0, 

as appears immediately on eliminating A, w, v from the three 

equations 

A... Paap iv Vv a % tee 

In order next to find the condition that the quartics should 
cut at right angles, we first premise, and the reader can verify 

without difficulty, that if A, B, C be point-circles, and a, 0, c have 
the same meaning as before, the condition that AA + wB+yrC, 
VA+p’B+yvC should cut each other at right angles is 

a {py + pv) +0? (VN +d) + 0 (Ap +p) = 0. 
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We observe further that, as at Conics, Art. 130, the quartic 
L/(A)+m /(B)+n/(C) will be touched at any point for 
which the values of ./(A), /(B), /(C) are p, p’, p”, by the circle 

A + 7B + Fa C=0. The condition that this circle should cut 

orthogonally the tangent circle to U’ /(A) +m’ /(B)+n' (C) is 

7” mn’ + m'n +p nl +n/1 Le lm’ + Um ae 
pp” p p pp’ 

But, solving between the two equations 
Ip + mp’ “ np” ah 0, Up we mp’ es n'p” Nie 0, 

we find p, p’, p” respectively proportional to mn’ — m’n, nl’ — nl, 

ln’—Um. Substituting in the preceding equation, we find that 
the condition that the quartics should be mutually orthogonal is 

a’ (m*n® — mn’) +B (nl? — n0) + 2 (Pm — Tm) = 0, 

the same as the condition already found that the quartics should 

be confocal; and the theorem stated is therefore proved. It 
does not appear to be necessary to the validity of this proof 

that C should be real, and hence the theorem is true that con- 
focal quartics cut at right angles, even though the four real 
foci should not lie in a circle. 

278. The theorem of Art. 277 was originally obtained from 
geometrical considerations by Dr. Hart for the case of the 
circular cubic. If we seek the locus of a point whose dis- 
tances from three fixed points are connected by the relation 
lp + mp’ + np” = 0, the coefficient of (a*+ y°)* will be found to be 

(C+ m+n) (m+n—l) (n+l—m) (l+m—n). 

Consequently, the locus, which is ordinarily a bicircular quartic, 
reduces to a circular cubic if /imin=0, and the theorems 

already here proved are true for circular cubics, which have also 
sixteen foci lying in general in four circles. Dr. Hart’s proof, 

which was given at length in the first edition, shews that if 

O, P, Q be the centres of the quadrangle formed by the four foci 
A, B, C, D, the cubic must pass through these points, the tan- 
gents at any of these points O being one of the bisectors of 
the angle made by the intersecting lines AC, BD, and being 
parallel to the real asymptote of the cubic; and that the cubic 
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also passes through & the centre of the focal circle, the tangent 
at / being parallel to 
the same asymptote.* 

Since then O, P, Q, R Q 
are points of contact 

of tangents from the 
same point of the 
curve, the point where 
OP meets QR (or the C 

foot of the perpendi- S B 
cular from O on QZ) 

is also a point on the 
curve (Art. 150), and 
similarly the points * 

0 

\ 
Vv 

where OQ meets PR, 

and OR, PQ; and it 
can be shewn that the — 
tangents at each of 

these points to the 
two cubics which pass 

through them cut at right angles. Thus the seven points common 
to the two cubics having A, B, C,D for their foci, are determined 

by simple constructions, and we may arrive by projection at 

theorems, some of which have been already stated ; for instance 

(see Art. 152), if corresponding tangents, taken in any order, 
from two points J, J mutually intersect in points A, B, C, D, 

the centres of the quadrangle formed by these points will be 

also points en the cubic, having for a common tangential point 
the point where JJ meets the curve again; and the point of 

contact of the fourth tangent from this point will be the pole of 

LJ with respect to the conic through the points A, B, C, D, J, J. 

279. The method by which Dr. Hart proved these theorems 
was by shewing that when the foci are given, the relations 
established Art. 276, combined with the condition 7+n=m, 

suffice to determine J, m, n, and that actually, denoting the 

* Thus the centres of the four focal circles of a circular cubic are the points of 

‘contact of tangents parallel to the real asymptote, 

KK 
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distances of O from the four foci by a, 5, c, d, the curve must 
either have the property 

(b+c)p+(a—8) p"=+(ate) p’, or (c—b) pt (a+b) p’=4 (ate) p’. 
Each coefficient is given a double sign, because, when the equa- 

tion Jp +mp’+np”=0 is cleared of radicals, it only contains 
the squares of /, m,n. The two equations answer to two dif- 

ferent cubics having the given points as foci; the different signs 

answer to different branches of the same cubic. The upper 

signs belong to a branch extending to infinity; for then the 
equation is satisfied by the values p=p’=p”, which are true 

for an infinitely distant point. The centre of the focal circle 

obviously lies on this branch. The lower signs belong to an 
oval, the equations then not being satisfied by p=p’= p. 

The equations being satisfied by the values a, 6, ¢ for Pp; 2 rBs 
we see that O is a point on the cubic. 

In like manner we have the relations 

(c—d)pt (a+d)p"=+ (at+c)p™ or (c+d) pt(a—d)p” = (ate) p”, 
whence, combining the ce ia 

p42 pee 
ate b+a? 

or the two cubics make up the locus of the intersection of two 
similar conics whose foci are respectively A and C, B and D. 
The similar conics which intersect at O have evidently as a 

common tangent one of the bisectors of the angles at O; 
these therefore are, as has been stated, the tangents to the 

two cubics which constitute the locus, and which therefore cut 
at right angles. 

‘ih 

dA 

280. Bicuspidal quartics may be considered as a limiting case 
of binodal quartics. In the case where the two cusps are the 
circular points J, J at infinity, the curve is called a Cartesian. 
Des Cartes studied this curve (thence known as the oval of 
Des Cartes), as the locus of a point O, whose distances from 
two fixed points A, B are connected by the relation /p + mp’ =c. 

Chasles shewed, and it can be verified without difficulty, that 
whenever this relation holds good, a third point C can be 
found on the line AB, whose distance from O satisfies a 

relation of the form /pinp”’=c’; in other words, that the 
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oval possesses, besides the two foci considered by Des Cartes, a 
third possessing the same property. We use the word Cartesian 
here in a somewhat wider sense. We shall shew that when 

a quartic has the two points J, J for cusps, it has three foci 
lying on a right line. When these foci are real, the curve 
is the same as that studied by Des Cartes; when two are 
imaginary we still call the curve a Cartesian, though Des Cartes’ 
mode of generation is no longer applicable. 

The equation of the Cartesian may generally be brought 
to the form S*=°L, where S represents a circle and ZL a right 
line, & being a constant (or, what is the same thing, /=0 
being the right line at infinity), from which form it is evident 

that the intersections of S and & are cusps, the cuspidal 
tangents meeting in the centre of S, which is therefore the 
triple focus of the Cartesian, while Z is evidently a bitangent 

of the curve.* The curve is then obviously the envelope 
of the variable circle WAL+2AS+h'=0, the centre of 
which obviously moves along a right line perpendicular to 
ZL; and equating the discriminant to zero, there are easily 
seen to be three values of A, for which the circle reduces 

to a point, and therefore three foci. rom the theory already 
given, if A, B, CO be any three of the variable circles, 

the equation of the envelope may be written in the form 
1 /(A)+m /(B)+n/(C)=0; and therefore we have the property 
lp + mp’ + np” =0, where p, p’, p” denote the distances from the 
three foci; or, again, since &* is a circle of the system 
answering to the value \=0, we have /p+mp’=nk. 
A Cartesian may also be generated as the locus of the 

vertex of a triangle, whose base angles move on two fixed 
circles, while the two sides pass through the centres of the 

circles, and the base passes through a fixed point on the line 

joining them. 
If any chord meet a Cartesian in four points, the sum of their 

distances from any focus is constant; for the polar equation, 
the focus being pole, is easily seen to be of the form 

p' —2 (a+b cosw) p+c'=0, 

* This equation has been studied by Prof. Cayley under the form 

(a? + y? — a”)? + 164A (x — m) = 0. 
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and if we eliminate w between this and the equation of an’ 
arbitrary line, we get for p a biquadratic of which — 4a is the 

coefficient of the second term. 
When, in the preceding c=0, the equation becomes 

p=a+6 cosa, and in addition to the two cusps J, J, the curve 
has the origin for a node. It is then called Pascal’s /émagon, 

and may evidently be generated by taking a constant length on 
the radii vectores to a circle from a point on it. If, further, 

a= b,the curve becomes tricuspidal, and is called the cardiorde, 
a curve generated by adding or subtracting a portion equal to 

the diameter, on the radii vectores to a circle from a point on it. 
The equation may be written in the form p? = m? cos 4a. 

281. The focal properties we have been discussing may 

be investigated by the method of inversion (Art. 122). It 
is easy to shew, that to a focus of any curve corresponds 

a focus of the inverse curve, and that the origin or centre 
of inversion will be a focus if the points J, J at infinity 

are cusps. Thus, for the Cartesian which has three col- 

linear foci, the inverse with regard to any point is a bi- 

circular quartic having three foci on a circle passing through 
the origin, which is also a focus. In inverting, if O be the 

origin, A, B any two points, a, > the inverse points, then for 

the distance AB we are to substitute To any relation 
ab 

Oa.Ob* 
then of the form AAP+ »LP=c will correspond one of the form 

Napt p’bp=c Op, and thus by considering the bicircular quartic 
as the inverse of a Cartesian we arrive at the fundamental property 
of bicireular quartics; and, in like manner, from any relation of 

the form AAP+ wbBP+vCP=0 may be deduced a relation 

Nap+pbp+vcp=0. The inverse of a bicircular quartic from 

any point on the curve is a circular cubic which, therefore, 
possesses the same focal properties. A circular cubic or bi- 

circular quartic is its own inverse with respect to any of the 

points O, P, Q, & (p. 249). ‘The angle at which two curves cut 

is not altered by inversion, and therefore the theorem as to 
confocal curves cutting at right angles, if proved for cubics, is 
proved also for quartics. The inverse of a conic is a bicircular 
quartic having the origin for an additional node, and from 
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the focal property of conics may be inferred that such quartics 
have the property 

where a and 3b are two foci and O the node. In like manner, 
by inverting the focus and directrix property of conics, we 
arrive at another method, given by Dr. Hart, for generating 

this kind of quartic. If the radius vector from a fixed point 

C to P meet a fixed circle passing through C in #, and if 

A be another fixed point, the quartic is the locus of the point 

P, for which PA = PE. 

282. There exists for the binodal quartic® a theory of the 
inscription of polygons, analogous to Poncelet’s theory in 

regard to conics. Let A, B be the nodes: starting from a point 

P of the curve, if we join this with A, the line AP meets the 
curve in one other point, say Q; joining this with JB, the line 
BQ meets the curve in one other point, say #; joining this 

again with A, the line AR meets the curve in one other point, 

say S; and so on. We have thus, in general, an unclosed 
polygon PQRS..., of which the alternate sides PQ, RS, ... 
pass through A, and the other alternate sides YL, ... pass 

through B. For a binodal quartic taken at random, it is not 

possible to find the point P, such that there shall be a closed 
polygon of a given even number of sides; for instance, a 
quadrilateral PQRSP, of which the sides PQ, LS pass through 

A and the sides QR, SP pass through B. But the quartic 

may be such that there exists a polygon of the kind in question 

(as regards the quadrilateral this is obviously the case, since 
considering a quadrilateral PQASP drawn at pleasure and 

taking A for the intersection of PQ, &S, and B for that of 

Qh, SP, we can describe a quartic passing through the points 
P, Q, &, 8S, and having the points A, B for nodes), and when 

this is so, that is, when there is one polygon, there are an 
infinity of polygons; viz. any point P whatever of the curve may 

be taken as the first summit, and the polygon, constructed as 
above, will close of itself. 

* Steiner, Geometrische Lehrsatze, Credle, vol. XXXII. p. 186 (1846). 
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283. Taking the nodes to be at the angular points of the 
triangle of reference, the equation of the curve must be of 
the form | 

ay?” + ba*x* + cx*y” + 2fx’y2 + 2gy"aau + Zhz*ay =0, 

which may be written 
2 2 

a(~) +2(-) +e(-) Lae bag 2 + 2h “s == 0, 
x y z Ye 20 xy 

Thus we see that the quartic may be generated from a conic by 

writing, in the equation of the latter, for each coordinate its 
reciprocal; a process which may be called “inversion,” using 
the word in a wider sense than that in which we have already 

employed it. It is easy to express this transformation by a 
geometrical construction. Let the coordinates be proportional 
to the perpendicular distances from the sides of the triangle of 

reference, and let P, P’ be two points, whose coordinates are 
connected by the reciprocal relations 

esyieaeV Sree IY 5 Liy ite myer sm: ays 

then we have seen, Conics, Art. 55, that the lines joining P, P’ to 

the vertices of the triangle make equal angles with the sides; or 

otherwise, Conics, p. 263, that if P be one focus of a conic touch- 
ing x, y, Z, then P’ will be the other focus. In general, in this 
method to any position of P corresponds a single definite posi- 

tion of P’. If, however, we have x =0, or P’ anywhere on 

the line BC, we have y and z both =0, and P coincides with A ; 

and reciprocally to A corresponds any point on BC. It is to be 

remarked, however, that when a =0, the corresponding values 
of y and z, being respectively 2’a’, xy’, though evanescent, have 
to each other the definite ratio 2’: y’; and therefore to any 

point P’ on BC corresponds a definite element of direction 
through A. We have, in fact, P indefinitely near to A, but in 

a given definite direction, viz. such that (as in the general case) 
AP, AP’ make equal angles with the sides. If now P describe 
any locus, the other point P’ will describe a corresponding 
locus; thus if the locus described by P be the right line 
ax+by+cz=0, that described by P’ will be the conic 
ay 2 + bax’ + ca’y’=0, and vice versd (compare Tonics, Art. 297, 
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Ex. 13); if a=0, that is to say, if the line pass through A, the conie 
reduces to 2” (bz’+cy’)=0, and leaving out the line « or BC, 
we may say that to the line dy + cz corresponds the line bz’ + cy’; 

and, as already mentioned, if the one locus be any conic, the 
other will be a trinodal quartic. 

284. The correspondence of the conic and quartic may be 
examined in detail; the conic meets each side of the triangle, 

say BC in two points; corresponding hereto we have through 

A two elements of direction, viz. these are the tangents of the 
quartic at its node A. MHence, according as the conic meets 
BC in two imaginary points, touches it, or meets it in two 

real points, the quartic has at A an acnode, cusp, or crunode, 

and the like for the other sides. ‘Thus, if the conic be an 
ellipse or, say, a circle, situate wholly within the triangle, the 

quartic is a triacnodal curve composed of a trigonoid figure 
within the triangle and of the three vertices as acnodes (fig. 1) 5 

if the ellipse is inscribed in the triangle, the quartic is tricus- 
pidal (fig. 2); if the ellipse cuts each side in two real points, 

then the quartic is tricrunodal; viz. if on each side the inter- 

sections are internal we have the fig. 3, whereas if the inter- 
sections are external we have the fig. 4. It is to be observed, 

Fig. (1). Fig. (2). 
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that in the transition from the one form to the other the 
ellipse must pass successively through the vertices of the tri- 

angle; and that when the ellipse passes through a vertex 

the corresponding quartic breaks up into a right line and a 

cubic; the transition cannot be made (as at first sight it would 
appear it might) through a quartic having a triple point. 

The complete discussion of the different forms would be 

interesting and not difficult, but it would occupy a good deal 
of space; it would be necessary (in the present case of plane 
curves) to consider the conics which in each figure correspond 
to the line at infinity of the other figure. For the like theory, 

as regards spherical figures, there are no such conics, and the 
theory is considerably simplified. 

285. The foregoing mode of generation of the trinodal 

quartic leads at once to various properties of the curve. It 

is well known that if a conic cuts the sides BC, CA, AB of 
a triangle, and from each vertex we draw lines to the inter- 
sections on the opposite sides, these six lines touch a conic; 

and it is easy to shew further, that if instead of the two lines 

through each vertex we consider the two inverse lines, these 

meet the oppsite sides in six points lying on a conic; and 
consequently that the six inverse lines also touch a conic. 
In fact, if the lines (w=ay, xw=a’y), (y=Bz, y= 2), 
(2=yx, z=y'a) meet the sides «=0, y=0, 2=0 respec- 

tively in six points lying on a conic, it is easily seen that 
ad’ 83’yy =1, a relation which remains unaltered when a, ~, y, 

a’, 8, y are changed into their reciprocals. Now, if a conic 

is transformed into a binodal quartic, then by what precedes 
the tangents at a node A of the quartic are the inverses of 
the lines from A to the intersections of BC with the conic; 

hence, the tangents at the nodes A, B, C, touch one and the same 
conic; a theorem which may also be derived directly from 
the equation of the quartic. 

286. Similarly, if from the points A, B, C we draw tangents 
to a conic, then it may be shewn that the six inverse lines are 
also tangents to a conic. But transforming the conic into a 
trinodal quartic, the tangents from A to the conic are trans- 
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formed into the tangents from the node A to the quartic (for a 
curve of class n, the number of tangents from a node is =n —4, 
and therefore for a trinodal quartic it is =2); and we have thus 
the theorem, that the siz tangents from the three nodes to the 
quartic touch one and the same conic. 

287. To the bitangents of the quartic correspond conics 
through A, B, C, having double contact with the conic; and 
to the stationary tangents of the quartic correspond conics 
through A, B, C, having stationary contact with the conic. 

It can be shewn, that the numbers of such conics are 4 and 6 

respectively, agreeing with r=4, .=6. But the result as to 

the bitangents can immediately be obtained from the equation 
of the curve, which may be written in the form 

{y@ Va) + 2a /(b) + xy V/(c)}" 
= 2xya |{v(be) —f} « + {W (ca)— 9} y + {W/(ab) — A}z], 

where the factor multiplying 2vyz evidently denotes a bitangent, 
and by changing the signs of the radicals, we have in all four 
bitangents. Write for a moment fe+gy+hz=s, x /(bc)=l, 

yV(ca)=m, z/(ab)=n, and if ©=0 denote the equation of 
the four bitangents, we have 

© = (s—l—m-—n) (s—l+m+n)(s+l—m+n)(s+l+m—n) 

= (s?— 7? — m* — n”)’ —4 (mn? + n°? + Pm? + 2lmns) 

= (s?— 2? — m? — nn’ — 4abeU. 

In other words, the equation of the curve may be written 

{( fet gy + hz)’ — beu* — cay’ — abz’}*- © =0, 

shewing that the eight points of contact of the bitangents lie on 
a@ conic. 

_ Ifthe four bitangents be denoted by ¢, u, v, w, the equation 
of the quartic may be written 

f+ui+vt+wi=0, 

or (04+ w+ v'+ w— 2tu — 2tv —2tw — 2vw — 2Qwu — 2uv)*? = 64tuvw. 

In this form it is evident that ¢, wu, v, w are bitangents whose 
points of contact lie on a conic, and it can be verified without 

much difficulty, that (¢—u, v—w), (t-v, u—w), (¢—w, u—v) 
are nodes. 

LL 
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288. We have just shewn how in one way the equation 
of the quartic can be reduced to the form UW=V”*; and 
generally if w,w, and v denote any two tangents to the conic 
and their chord of contact, since the equation of the conic can 
be written in the form uw=v’", that of the quartic is thence 

immediately given in the form UW=V”", where U, V, W are 
linear functions of yz, zx, xy. 

In connecting the trinodal quartic as above with a conic, 

we have also verified that the curve is unicursal. Since the 

coordinates x’, ¥’, 2’ of a point on the conic can be expressed 
as quadratic functions of a parameter @, the coordinates 72’, 

za’, xy’ of the corresponding point on the quartic are imme- 
diately given as biquadratic functions of the same parameter. 

The preceding theory of trinodal quartics extends to the 

case when any or all of the singular points are cusps. If all 

are cusps the equation of the curve is reducible to the form 

xt+y%+z2%=0, and the tangents at the cusps are g=y=z, which 

meet ina point; as we may also see by reciprocation, the re- 
ciprocal being a cubic whose equation may be written in the form 

a+ yi+zi=0. When the curve has two cusps and a node, 

the line joining the two points of inflexion, the line joining 

the two cusps, and the bitangent all pass through the same 

point. The cases of the higher singularities, described Art. 243, 
require to be separately treated. 

289. The equation of a quartic having a tacnode, as given 
Art. 244, is 

ye + ba'y2 + cxy’z + dy’2 + ea* + fa°y + ga°y’ + hay’ + iy* =0. 

Let it also have a node, and since, in Art. 244, it was only 

assumed that the point xy was the tacnode and the line y the 

tangent at it, we may take the point zz as the other node, 
In order that this point should be a node we must have d, h, 
and 7=0, and the equation becomes 

(yz)* + ba*.ye + cay .y2 + ex + fa?.ay+gax°y’=0. 

We have written the equation so as to exhibit that it is a 
quadratic function of ay, a*, yz. Hence, if in the general 

equation of a conic we write xy, x’, yz for x, y, 2 respectively, 

i Se 
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we shall have the equation of a quartic with node and tacnode. 
It will be seen that the relations 

wiiy $e ey to see 

imply reciprocally w:y:2=ay : 2": 72, 

so that we have a like theory to that which exists for a quartic 
with three distingt nodes. The constants may be determined 

so that the node shall become a cusp, or the tacnode a node- 
cusp, or that both these changes should take place, and the 

theory thus extends to quartics having two distinct singular 

points, one of them a node or cusp, the other a tacnode or 

node-cusp. 

290. ‘The equation of a quartic having an oscnode has been 
given, Art. 244, as 

(yz — max’) + cay (yz — max") + dy’z + gau°y? + hay’ + ty* =0. 

It is obviously a quadratic function of yz—mz*, xy, y*. Now 
the relations 

esy se aay sys ye—mx 

will be found to imply 

RBiyi sary iy iy” t+m2z", 

so that there is for the present case a theory analogous to that 

established for trinodal quartics. ‘The constants may be parti- 

cularized, so that the oscnode becomes a tacnode-cusp, and the 

theory thus extends to the case of quartics having a tacnode 
cusp. In all these foregoing cases we have expressed the 

coordinates xz, y, 2 of any point on the quartic, as quadratic 
functions of a’, y’, 2’, a variable point on a conic; and since 

the latter coordinates can be expressed as quadratic functions 

of a parameter 0, the former coordinates are expressed as 
quartic functions of the same parameter. 

291. In the remaining case of a quartic curve having a 

triple point (general or of any special form), the mode of 
treatment used in the last articles is not applicable, but we can 

otherwise immediately express the coordinates as rational func- 

tions of a parameter. ‘aking the point zy as the triple point, 
the equation of the curve is of the form zu,=u,, where u,, wu, 
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are homogeneous functions of the third and fourth degrees 
respectively in a, y. If we now substitute y=@x, we get 
zO,=20,, where ©,, ©, denote cubic and quartic functions of 
6; and we have 2, y, z respectively proportional to ©,, 00,, ,. 

The method here employed is exactly that suggested in 
Art. 44. A variable line y = 6% drawn through the triple point 
meets the curve in but one other point, the coordinates of which 

are therefore rationally expressible in terms of @. And we should 
be led to substantially the same results if we employed the 
same method in the cases previously considered; for example, 
if in the case of a trinodal quartic we determine each point 
of the quartic as the intersection of the curve with a variable 

conic passing through the three nodes, and through another 

fixed point on the curve. 
The special case of a quartic with a triple point z°y=z* may 

be particularly noticed, as it can be treated by exactly the same 
method as was used (Art. 212). The curve has, beside the 
triple point, no singular point but a point of undulation, and 
its reciprocal is a curve of like nature. 

291 (a). Unicursal quartics may also be treated by the 

method of Art. 216 (a). We may express the coordinates 

czar +4dr pw +6crd7u? +4drpy* + ep", 

y=ar* +40 rp + 60 pw? + 4d’ rp? + eps, 

z2=a r+ 4b"r'p t+ 60'Ap? + 4d” rp? + eu’, 

and can (Art. 44) write down the equation of the corresponding 
quartic. ‘The equation determining the parameters of the points 

of inflexion, and the relation between the parameters of three 
points which lie in a right line, may be found as in the articles 

referred to, or else as follows. Substituting the above written 
values for the coordinates in lx +my+nz=0, we get a quartic 

determining the parameters of the points in which that line 
meets the curve.* ‘The theory of equations then enables us 

* It is evident that by forming the discriminant of that quartic we get the 

equation of the reciprocal, or tangential equation, in the form S*= T?, 
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to write down 

FA BF RIE 

=f fh fe 

— 4 (1b + mb! + nb”) = ry pl we pwr wl ye we ppl WO”, 

6 (le+- me’ + nc”) =r ww ww rN” A pt yp VD” 

3 ON we BOW, 
ay (1 d +m d’ +n d”) is [Ps ng taly head ue hak i“ > ¥4 Pad Noss re Aw!” 

la + ma’ + na” 

le +-me +ne&? =ANA’N”, 

From these equations, if we linearly eliminate 7, m,n, ”, w’”, 
we get the relation connecting the parameters of three points on 

a right line, viz. 

, 4? 

ee eres nee 

Dh: = A BA 
Gey Gey. Ga. CO, B 

dd ad, —42", D, O 
@, €4 €., ,D)=0, 

where we have written 

vps wp nw”, Fe ry’ pw” 4 x’ ran 4 i” be’, 

C= pnd” if Wrn’'r at WN, D bh » he t42 

If we make X: w=’: w’ =X": w”, we find that the para- 
meters of the points of inflexion are determined by 

a, @, a, pw, 
Wap S ay Pee, Baa) 

6c, 6c, 6c’, 3ur’, 3wr 
oe Sas. ae ke, Oa 

oe ak POE Cae  |=0. 

The first determinant expanded may be written 

24 (ab’c’”) D® + 16 (ab’d’”) CD + 4 (ab’e”) (C* — BD) 

+ 24 (ac’d”) BD + 6 (ac’e”) (BC -— AD) +96 (be'd”) AD 

+4 (ad’e’”) (B*— AC) + 24 (dc'e’”) AC + 16 (bd'e”) AB 

+24 (cd’e”) A? =0; 
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and the second determinant expanded and divided by 24 gives, 
for determining the inflexions, the sextic 

(ab’c’) N° + 2 (ab’d”) Nw + {(ab’e’”) + 3 (ac’d”)} M*p? 
re {2 (ac’e’”) es 4 (be'd’”)} Mu* + {(a d’ e”) “i 3 (bc , et Vu" 

+2 (bd’e”) Ap? + (ed’e”) uw? = 0. 

If in the preceding relation two of the parameters be made 

equal, we get the relation connecting the parameter of any point 

A with that of one of the points B where the tangent at A 

meets the curve again, viz. writing for D, C, B, A respectively 
Wr), 2ZApwr’ + Aw’, WA’ + 2m’, ww’, we have 

N? [24 (ab’o”) Mt + 32 (ab’d”) Mu + {12 (ab’e”) + 24 (ac’d”)} Nu 
+12 (ac’e’”) Ap? + 4 (ad’e”) p*] 

+ 2n'p’ [8 (ab’d”) 0 

+ {4 (ab’e”’) + 24 (ac’d”)} Mw + {12 (ac’e”) + 48 (be'd”\} Vu? 
+ {4’ ad’é 4? |. 24 (bce a); AL + 8 (bd’e’”’) p'} , 

+ wh (able) 
+ 12 (ac’e”) wt (12ad’e* + 24 (de'e’”)} Nu” + 32 (bd’e’”) r 

+24 (cd’e’”) p*} =0, 

from which equation we can determine the parameters, either of 
the two points B answering to any point on the curve A, or of 

the 4 points A answering to any point B. If we form the 

condition that the equation in X’: w’ should have equal roots, 
we get an octavic in X: mw, determining the: parameters of the 
8 points of contact of the 4 bitangents of the quartic. 

When it has been proved that it is possible to find four 
linear functions ¢, wu, v, w of x, y, 2, which expressed in terms of 

A, # are perfect squares, it is evident by extraction of roots and 
linear elimination of X*, Aw, mw’, that the equation of the curve 
ean be written in the form Aé? + But + Cv? + Dwt = 

291 (4). Conditions to be satisfied by the parameters of a 
node are obtained as in Art. 216 (c), from the consideration that 
the relation connecting the parameters of three collinear points 
must be satistied when two of these parameters correspond to the 
same node, and the third to any point whatever on the curve, 

Write pp” =a, Nw" +p’ =8, NA” =¥, then we have 4 =ya, 
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B=ra+ yu, C=rAB+ py, D=ry. Substituting these values in 

the determinant of the last article, and equating separately to 
zero the coefficients of X”, Au, w” we have the three conditions 

6c, 

€ 3; 

edb, 4 Be 
, 

6c , 

— 4d, —4d', ~ 4d’, 
i, 

4 

A 

6c, 7,4 

B 
ef, y iO. 

mee fa a oe ela var 

— 4b, — 4b’, — 4b”, B, a — 4b, — 4b’, —4b", « 

om, Ge, 60,4; 8 Go, GG) Gare aoe 

Ad, —4d,—-4d% 4d, —4¢, — 4d, ¥, B 

me eye, " ey aay eh lO 

Gia Wy ees ot 

Conditions which expanded are 

24 (ab’c’’) y+ 16 (ab’d’) By + 4 (ab’e”) (8B? — wy) + 24 (ac’d”) ay 

+6 (ac’e”) a8 + 4 (ad’e’”’) a’ =0, 

4 (abe) y? + 6 (ac’e’”) By +4 (ad’e”) (B® — ay) +24 (dc'e”) ay 

+16 (bd'e’’) a8 + 24 (cd’e”) a’ =0, 

16 (ab'd") y’ + 4 (ab’e") By + 24 (ac'd") By + 6 (ac'e”) B? 

+ 96 (be'd") ay + 4 (ad'e") a8 + 24 (bc'e"’) a8 + 16 (bd'e") a? = 0. 

With these equations we combine the three obtained by mul- 

tiplying the equation Wa—prAB+p'y=0 by a, 8, y respec- 

tively, and linearly eliminating a’, 8’, y’, By, yx, a8 we get a 
sextic for determining the parameters of the three nodes. 

There is no difficulty in analysing, as in Art. 216(d), the 
different cases where the sextic of the last article can have equal 

roots, and so arriving at the different special cases of unicursal 
quartics already enunciated. 
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292. When we have occasion to write the equation of a 

quartic at length, we shall write it 

aa* + by* + cz* + 6fy'2" + 6g2"x" + Cha*y’ 

+ 12la*yz + 12my*ex + 12nz*xy 

+ 4a,a°y + 4a,0°2 + 4b,y°a + 4b,y°z + 40,2°@ + 40,2°y = 0. 
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The concomitant of lowest order in the coefficients is the con- 
travariant (Art. 92) of the second order in the coefficients, 
whose symbolical expression is (a412)*, and whose vanishing 

expresses that the line ax+ y+ yz cuts the quartic in four 

points, for which the invariant S vanishes. We shall call this 
contravariant o; it is of the fourth order in the variables 

a, 8, y, and its coefficients are 

A =be+3f*—4b,c,, B=ca+3g°—4c,a,, C=ab + 3h’ —4a,b,, 

F =af+gh+20 —2a,n—2a,m, 

G =bg +hf +2m*— 2b, — 2b,n, 

H =ch+fg + 2n’? —2c,m— 2c,l, 

L =2fl —mn—gb,—he, +,¢,, 

M =2gm —nl —he,- fa,+¢,a,, 

N =2hn —Im —fa,—gb, + ab, 

A, = 3mc,—3nf —cb, +b,c,, A,=8nb, — 3mf— be, + b,c, 

B, =3na, —3lg —ac,+4a,¢,, B,=3le, - 38ng —ca,+ c,d, 

C,=3lb, — 3mh—ba,+,a,, C,=3ma,- 3lh — ab,+a,p,- 

293. The contravariant just mentioned is the evectant of 

the simplest invariant A, which is of the third order in the 
coefficients, and has for its symbolical expression (123)*; that 
is to say, o is found by performing on A the operation | 

a 2 +a5 +o 5 + By Gt &eu5 

and conversely from the values already given for the coefficients 

of o the value of A can be inferred. This is 

A = abe +38 (af? + bg’ + ch’) —4 (abc, + be,a, + ca,b,) 

+12 (f+ gm’ + hn’) + 6fgh —12lmn 

— 12 (a,nft+ a,mf + b,ng + b,lg + cymh + ¢,lh) 

+ 12 (lb,c, + me,a, + na,b,) + 4 (a,b,c, + a,b,¢,). 

If we use the same notation as in Art. 223, the value of 
A may be written 

x (d’) + 4 (dea) + 3 (db*) — 12 (c’d), 
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where 

(d*) =d.d,— 4d,d, + 3d’, 

(dea) = a, {d,c, — 3d,c,+ 3d,c, — d,c,} + a, {d,c, — 3d,c, + 3d,c,—d,¢,}, 

(db*) = db,’ — 4d,b,b, + 4d,b,’ + 2d,b,b, — 4d,5,b, + db," 
cas 2.0.2 ‘3°01 

(cd) soe b, (¢,¢, fg ¢,’) Siti b, (C,C, arr ,C,) aM b, (¢,c, Wie ¢,') ’ 

the invariants (d’),; (dca), &c., being all known in the theory 

of the binary quantics. 

294, The next simplest invariant B is of the sixth order 
in the coefficients. It may be formed by taking the six 
equations obtained by twice differentiating the given equation 

with respect to x, y or z, and from these six equations elimi- 

nating dialytically 2°, y’, 2’, yz, 2x, zy. We thus have B in 

the form of a determinant | | 

dy Ry og G a, 

he ke 
I) A Cy Coy Cy n 

l, b 

sy My, Cry Ny Ys l 

ey) b, Ny Mm, l, h 

We shall presently give the developed expression for B. 
Meanwhile, we remark that Clebsch has used this invariant 

to shew that the form 
prgtr+s+=0, 

where p, g, 7, s, ¢ are linear functions of the coordinates, is not 
one to which the equation of every quartic can be reduced. 

Since p, g, &c., each implicitly contain three constants, the 
form just written involves fourteen independent constants, and 

therefore, at first sight, seems capable of being used as a 
canonical form sufficiently general to represent any quartic. 

But on forming for the above equation the invariant B, it will 
be found to vanish, and therefore this form will only represent 

quartics for which B=0.* | 

* This class of quartics has been studied by Liiroth, Mathematische Annalen, 

vol, I, p. 87 (1870). 

MM 
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295. In calculating the value of B, it is convenient to use © 
the following value for a symmetrical determinant of six rows 

_ and columns, the constituents of which are denoted by a’, ad, ac, 
&e., ba, b°, be, &e. 

abcde’ f? — Sa’b'c'd® (ef)? + 23a°b’c’. de. ef . fd + Sa*b* (cd )? lef)? 

— 23a°b".cd .de.ef . fo+ 23a’. be.cd.de. ef. fb — 23a’ (bc)* de.ef. fd 

+23 (ab)’ cd.de.ef.fe — & (ab)? (cd) (ef )* — 2 3ab.hc.ed.de.ef. fa 

+23ab.be.ca.de.ef.fd. | 

The expanded value of B is as follows: 

abe ( foh —fl — gm* — hn’ + 2lmn) 

+ be {lt — Ugh +2 (gm— nl) al + 2 (hn — ml) al + (n® —fg) a, 

4-(m* — fh) a,’ + 2 (fE— mn) a,a,} 

+ ca {m* — mifh + 2 (fl — mn) bm + 2 (hn — ml) b,m + (n* — fg) b,” 

+ (2 — gh) b, + 2 (gm — nl) b.b,} 

+ ab {n* — nifg + 2 (fl— mn) en + 2 (gm — In) cn + (m? —fh) 0 

+ (2 —gh) c,’ + 2 (hn — lm) c,c,} 

— (af* + bg’ + ch®) (fgh —f$P — gm*® — hn? + Alin) 

+ 3 (afm'n’ + bgn*l’ + chl’m’) 

+ 2af” (b,gn + chm) + 2bg* (c,hl + a, fn) + 2ch" (a, fm + b,g!) 

— 2af (b,n* + ¢,m*) — 2by (c,0° + a,n*) — 2ch (aym* + 6,0) 

+ 2afl (b,n* + ¢,m*) + 2bgm (c,P + a,n*) + 2chn (a,m’ + bP) 

_ —2afmn (bg + ¢,h) — 2dgln (c,h +a,f) — 2chlm (a, f+ b,g) 

" — 2a (bmn* + c,m'n) — 2b (c,nl° + a,ln®) — 2c (a,lin® + bmi’) 

+a (bign* + ¢,°hm*) + b (cZh? +.a,fn") + ¢(aZfim? + b,*g/*) 

+ 2afl (mb,c, + nb,c,) + 2bgm (ne,a, + lc,a,) + 2chn (la,b, + ma,b,) 

+ 2amn (mb,c, + nb,c,) + 2bnl (nc,a, + le,a,) + 2clm (la,b, + ma,b,) 

— 2af (hnb,c, + gmb,c,) —2bg ( fle,a,+ hne,a,) — 2ch (gma,b, + fla,b,) 

+ 2 ( fghtlmn)(ab,c,+ be,a,+¢a,b,) — 2afl’b,c,— 2hgm'c,a,—2chn'a,b, 

~ 2 (af*lb,c, + bg’me,a, + ch’na,b,) 

— 2ab,c, (b,gn + c,h) — 2be,a, (c,hl + a, fn) — 2ca,b, (a, fm + b,g1) 

+ 2ab,c, (cym* + bn") + 2be,a, (a,n® + ¢,1") + 2ca,b, (b,0 + am’) 

— 2al (inb,c,’ + ne,b,”) — 2bm (ne,a,” + la,c,”) — 2cn (a,b,” + b,a,") 
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+ a (hb,’c,* + gb,"c,") +b (fe,7a,” + he,?a,*) + ¢ (ga,’b,* + ha,*b,”) 1%) 
+ afb,*c," + bgc,*a,” + cha,’b,’+ 2alb,c,b,c, + 2bmc,a,c,a, + 2cna,,a,), 

— 2ab,c, (me,b, + nb,c,)— 2be,a, (na,c, + lc,a,) — 2ca,b, (lb,a, + ma,b,) 

+ 2f%q°h* — fgh (f0 + gm* + hn’) + 10fghlmn — (fP + gm? + hn’)? 

+ 2lmn (fl + gm? + hn*) — Pm?n? 

+ 2 (b gn + chm) (gm® + hn® — 2 f0 — fgh — ln) 

+2 (a, fn + c,hl) (hn* +f0 — 29m? — fgoh — inn) 

+2 (a, fm + b,gl) (fl + gm? — 2hn? — foh — inn) 

+ (gh—P)(b,9 — ofh)'+ (hf - m’) (oh —a,f)* + (fy - 0°)(a,f 8,9) 
+ 2a,a,f° (2mn — fl) + 2b,b,9° (2nl — gm) + 2c,c,h (2lm — hn) 

+ 2lb,c, (fgk + lan + fl — gm — hn’) 

+ 2me,a, (fg + lmn + gm’ — hn? — fl’) 

+ 2na,b, ( fgk + lmn + hn® —f0 — gm’) 

— 2ghmnb,c, — 2hfnle,a, — 2fglma,b, 

+ 2 (d,c,gm + b,c,hn) (gh + 20°) +2 (c,a,hn + ¢,a,,fl) (hf + 2m’) 

+ 2 (a,b, fl + b,a, gm) (fg + 2n’) 

— 2 (a,’c,f’m + b,'a,g’n + ¢,°b,h'1 + a2b, f?n +b,c,9'l + ¢,7a,h’m) 

+ 2fmn (a,c, + a,'b,) + 2gln (b,7c, + b2a,) + 2hlmn (c.°b, + ¢,"a,) 

— 2 (a,b,c, +a,b,¢,) (fl +gm*+hn?+lmn)  _ 

— 2fa,a, (c,m” + b,n*) — 29b,), (c,0’ + a,n*) — 2he,c, (b,7 + a,m*) 

+ 2 (fl— mn) (gb,c,a, + he,a,b,) + 2 (gm — nl) (he,a,b, +fa,b,¢,) 

+ 2 (hn — Im) ( fa,b,c, + 9b,¢,4,) 

— (Pb %c? + m°cZa,? + nab?) 

+2 (b,c,a, —¢,a,),) (6,91 + chin + a, fn —c,hl — a, fm —b,gn) 

+ 2 (0,c,a,0,f? + ¢,a,b,b,9° + a,b,c,c,h”) 

— 29h (b,’a,c, + ¢,2a,b,) — 2hf (c,7b,a, + a,2b,c,) — 2fg (a,°c,b, + b,7c,a,) 
22°71 | AD Lae 3°32 2°23 BONS Sas 

+ (4/0 —2mn) c,a,a,b, + (4gm —2nl) a,b,b,c, + (4hn — 21m) be 

+ 2 (a,b,c, + a,b,¢,) (1b,c, + mce,a, + na,b,) — (a,b,c, + 4,0,¢ 2 
3-1-2 2°34 0,0.) » 

1%, 

296. In the notation of Arts. 223, 293, the value of B is 

r (d*) (b°) — x (d’c°b) + r (de*) — (d*) (ba*) + (d’c’a?) + 2 (d?cb*a) 

— (6°) (d°b*) — 2 (de*ba) + (de*b*) — (c°d)’, 
where (d°) =d,d,d, + 2d,d,d,—d,d — dd; —d,, 
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(d’c°b) = b, {c,” (d,d, — d,*) + 2¢,c, (d,d, — d,d,) + 2c,c, (d,d,'— d,”) 

+ ¢," (d,d,— d,”) + 2¢,¢, (d,7, — d,d,) + ¢,” (d,d,— 4,7) 

+ b, {c,” (dd, —d,’) + 2c,¢, (d,d, — d,d,) + 2c,c, (d,d, — d,”) 

+c,” (d,d,— d,’) + 2¢,¢, (d,d, — d,d,) + ¢, (d,d,— d,’)} 

— 2b, {c,¢, (d,d,- d,") + ¢,¢, (d,d, — d,d,) +. ¢,¢, (d,d, — d,”) 

+c,’ (dd, —d,d,) + ¢,¢, (d,d, + d,d,— 2d,”) 

+ ¢,¢, (d,d,— d,d,) + eu (ida dade) + Cfo (hey 

(d’c’a’) is formed from (d’c’}) by writing a,”, a,’, 2,4, for ,, 5,, 4, 

(de') = d, (c,c, — ¢,")? — 2d, (¢,c, — ¢,¢,) (¢,¢, — ¢,’) 

+ d, {(¢,¢, — ¢,¢,)"+ 2 (6,6, — ¢,7)(¢,¢, — ¢,")} — 2d, (¢,¢, — ©") (¢,¢3- ©) 

+ d,(c,c,—¢,")*, 

(a*) = b,a,” — 26,a,a, + b,47 LisOn 2 Ot? 

(d°cb*a) ae b, (a,c, +.4,¢,) + 4,4,¢,} P 

+ {b,a,c, — 8, (a,c, + a,¢,) + 4,a,¢,} Q 

+ {b,a,¢, — , (a,c, + aC, ) ss b,4,C,) fh, 

where P=), (d,d,— d,’) — 6, (d,d,—,d,) +6, (dd, —d,"), 

Q =, (d,d,—d,d,) — b, (d,?—d,d,) +.b, (dd, - d.d,), 

R=b, (dd,—d,") —6b, (dd, - d,d,) + 6, (dd, — d,"), 

(d°b") = (dd, — d,?) b2 + (dd, — d,’) 6° + dd, -— d,’) b, 

+ 20.6, (d,d,— d,d,)'+ 2b,b, (d,d,— d,’) + 26,0, (d,d, — d.d,', 

(de*ba) =a, {P(e,c, — ¢,”) + Q (c,¢, — 60.) + B (c,¢, - ¢,")} 

+a, (P' (c0,— ¢,") + pe (¢,0, — G04) + Hi (0,0, — ¢,')53 
where P= (c,d, ag diya let Pei 

€) = ig hia oB +H od 

Lt = b, (¢,d,- ace d,) +4, (ed 

=b, (¢,d,—¢,d,) +8, fe “AN 

pa b, (¢,d, - ee 608 et ia c,d,) 

buted! cate + b, (ed, - ia 

(dc*b") = d, {c,"b,b,? — 2¢,¢, ig + b,°) + io b, 

c,” (b,0," + 3b,b,”) — 4¢,¢,b,0,? + 5,%c,"} 

— 2d, (hh), — 0,0, (b,7b, + 26, x : + ¢,0,),°b, + 2c,"b,b,5, + ¢,¢,5,°b, 

— 2c.¢, bb." nie D b2 +¢,¢,b,"} 
sees 
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+ d, {c,'b,’ — 2c,c, (b,7b, + 2b,b,”) + 2¢,¢, (b,° + 6,5,4,) 

— ¢,” (b,°b, + 2b,0,") + 2c,c, (b,° + 50,0,0,) 

— 2¢,c, (b,b," + 2b,b,”) —c,* (b,b,7 + 20,0,”) +67} 

— 2d, {c,°b,"b, - cc, (b,," + 25,0,") + ¢,¢,,b,7 + 2¢,7b,0,0, + ¢,¢,0,0," 
mace | ale | eee | te 8 Se moe 8 

— 2¢,c,b,°b, — ¢,°b,b,° + ¢,c,),} 

+ d, {c,"b,b,’ — 2c,¢, (6,0,2, + 5,") + 2c,¢,,"b, + ¢,° (b,°b, + 3b,5,") 

se 4c,¢, 1”0 bb’ + B30, 
(c’b) b, (¢,¢, Ri ¢,’) ad, (C50, es ¢,¢,) + b, (C,¢, me C,")« 

297. We have seen (Art. 221) that if we had a covariant 
quartic, we could, from the invariants already obtained, derive 

a series of others. One such covariant can be at once obtained 

by forming the equation of the locus of a point whose first 
polar is a cubic for which the invariant S vanishes; in other 

words, by equating to nothing the S of the polar cubic. The 

symbolical expression for this covariant is (123) (234) (314) (124). 
The covariant S of the guartic 

aa* + by* + c2z*+ du* + evt=0 

is of the form EN a Ser 
ee 2 ae 8 

Hence, as we have already seen, that the first form, though 

apparently containing a sufficient number of constants, is a 
special one to which the equation of a quartic cannot in general 

be reduced; so is the second form also one to which the equa- 
tion of a quartic cannot be brought unless a certain relation 

between its invariants be satisfied. 
There are other covariant quartics, but that just described is 

of the lowest order in the coefficients. Any other covariant 
quartic of the fourth order in the coefficients must be of the form 

S+kAU, where & is a numerical constant and JA the first 
invariant. ‘This may easily be verified with respect to the 
covariant obtained by forming the contravariant of the contra- 

variant of Art. 292. 

298. The general values of the coefficients of S have not 
- been calculated, nor have any of the higher invariants. I have 
thought it worth while, however, to examine the special case 

ax’ + hy’ + cz* 4 6fy?2” + 6gz "a + 6ha'y’ = (), 
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This form only implicitly contains eleven constants, and there- 
fore is a very particular case of the general equation of the 
quartic; but it lends itself easily to calculation, because the 
covariant S is of the same form 

aa* + by* + cz* + 6fy’2" + 6g2"a" + 6ha’y? = 0; 

and, therefore (Art. 221), from any invariant can be derived 
d 

2a +b-= Be! &e., an 

operation which we shall denote by the symbol ¢. Although 
invariants which exist in general may vanish for the special case 
here considered, yet invariants, which in this case are distinct, 

will be distinct in general. By calculating the invariants for 
the special case, we obtain all the terms of the general in- 
variants which contain only the coefficients a, b, c, f, 9g, h 

The values of the coefficients of S, for the form in question, 
are 

another by performing on it the operation a 

a=x67°h", b=6hi/*, c=6f%q", 

f =begh —f (bg" + ch’) — "gh, 
g =cahf—g (ch’ + af") —fg"h, 
h=abfg —h(af* + bg’) —fgh’. 

It is convenient to remember, that for the same form the 
values ot the coefficients of the contravariant o, Art. 292, are 

A=be+3f*, B=ca+ 39°, C=ab+3f’, 

=af+gh, G=bat+hf, H=ch+ fg. 

299. We find it convenient to use the abbreviations 

abe = L, af?’ + bg’+ ch® =P, beg*h* + cah®f? + abf’g?=Q, foh=R; 

then the values of the invariants previously found are, for the 
special case we are considering, 

A=L4+3P+6Rh, B=LR+2h’?— PR; or B= AR-4PR-4R’. 

The results of the operation ¢ on these several quantities are 

O(Li= 60, d(P)=6LR-2PR-4Q4+18R’, 

}(Q)=—-2PQ-—4hQ-6LAR + 12PR’ + 40PRK, 

o()= Y—2PR— 3h’, 

whence (A) =18B. 

+ bt ‘4 » phe alias 5 

somite as lecRe nee eee ENR Se Se 
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We can then obtain a new invariant of the ninth order in 

the coefficients by performing on B the operation ¢ The 
result is 

$ (B)=C.=Q(L— P+ 14R)— LR(2P+ 9R) + R(2P*— 3PR-308’). 
The invariant just found is not, however, the only independent 
invariant of the ninth order in the coefficients. If we write the 

general equation of a quartic u,+ w,z+ u,z" + u,z° + cz*=0, then 
generally the highest power of ¢ which occurs in an invariant 
of the ninth order will be the third, and c will be multiplied by 
an invariant of the sixth order in the coefficients of the binary 
quartic v,. This latter invariant must be of the form s°+ kt’; 

and any assumed invariant of the ninth order can be resolved 

into two parts, in one of which c’ will be multiplied by s°, and 

in the other by ¢. ‘The former part can be expressed in the 
form 14*+mAB+nC, where A, B, C, are the invariants 

already calculated; for the expression of the latter a new in- 

variant is necessary, and we proceed to give one of several ways 

in which it may be obtained. It will first, however, be neces- 

sary to mention some other covariants and contravariants. 

300. The value of the Hessian for this case is 

aghx’+ bhfy’+ ofgz°+ (abg + ahf— 3gh*)a*y’+ (ach + afg —3q°h) x*2" 

+ (abf+ bgh—3fh*) y’x"+(bch+ bfg— 3f*h) y*2’+ (caf + chg—3fg")zx" 

+ (beg + cfh — 3f"q) zy’ + (abe — 8af* — 8bg’ — 3ch’ + 18fgh) x*y?2*. 

Again, it has been stated (Art. 92) that a quartic has also a 
contravariant sextic, the symbol for which is (a12)* (a23)* (a31)*. 

The value of this, for the case we are considering, is 

(Lof —f°) a° + (cag — g*) B° + (abh — h?) yy? 

+ (beg+ 6cfh—3f?9)a*B"+ (bch+ 6bfg—3f*h) aiy’-+(acft 6egh-39°f)B'a* 

+ (ach + 6afg — 3g*h) By’ + (abf+ 6bgh — 3fh*) y*0? 

+ (abg + 6afh — 3gh") y‘B’+ fabe—3(af*+ bg’+ ch?) + 48fgh} a® By’. 

If, introducing differential symbols in either of these, we operate 
on the other, the result is A*+576B8. If we operate on the 

Hessian with the contravariant o, we get a covariant quadratic 
of the fifth order in the coefficients; and if we operate on the 

contravariant sextic with the quartic itself, we get a contra- 
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variant quadratic of the fourth order in the coefficients. The 
values of these quadratics are respectively 

(afx’ + bgy’ + chz’\(L+4+8P+30R) 

+ (gha*+ hfy’+ fg2") (10L —6P— 12R) —4 (a®ftx®+ Big?y"+ ch'e!) + 
(fo’ + 98° + hy’) (83L+ 5P+2R) — 8 (af*a? + bg? BR+ ch*y’) 

+4 (begha’ + cahfP’ + abfgy’). 

If we introduce differential symbols into either of these two 

concomitants and operate on the other, the result is a new 
invariant 

C, = (80L — 32P+ 448R) 04+ 83P®—6P°L— 134P°R 

+ 3PL* +128PLR — 60PR’ + 102L°R + 408 LR — 72K". 

There appears to be for the quartic we are considering no 

other independent invariant of the ninth order. If, for ex- 
ample, we operate with the contravariant conic on the quartic 

itself, the result is expressible in terms of the invariants 

already found, being 3C,—- 80C,—180AB. We might perhaps 
more simply have taken for the second independent invariant 

3 (C, — 82 C,), or 

C,=16QL+4 P*-2P°L—66P°R+ PL’ + 64PLR + 12PR’ 

+ 340°R + 232LR* + 2968", 

301. We proceed next to form invariants of the twelfth 

order in the coefficients. We can form the cubic invariant of 

the quartic S by help of the formule 

L' =216R*, 
P'=6{Q-2PQR-42°Q4+2P°R’-2PLR’+4PRH+6LR+3K%4, 

i= Q@-2LKhQ- PR -2PR+ PR +4LR — Fe, 

whence L'+ 3P’ +6’ =6D,, where 

D,=40'+ Q(-6PR—-2LR — 12K”) 

+5P°R’- 6PLR +10PR + LR’ + 22D RR 4+ 44K*, 

Again, by performing the operation ¢ on C., we get 

. D,= 249’ + Q(4P* —4PL — 84PR — 202K — 248K”) 

? —4P*R-14P*R* + 4PL'R + 144PLR + 444PR 
— 18/7R*— 84 LR + 216K, 
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and, by combining these, we have D, —6D,=4D,, where 

D,= Q(P*-— PL -12PR-—2LR-— 44h’) — P*R—-1UP*h 

+ PI?R+45PLR + 96PR’ —- 62’ R’ — 54LR* —12K*. 

In terms of these and of the other invariants already given 

can be expressed the other invariants of the twelfth order, such 
as $(C,), and the discriminant of the contravariant conic, 

So, again, we can express in terms of the preceding the 
invariants of the contravariant quartic; we have 

D'=[?+3PL+9Q + 27f*, 

f'=LR+ Q+PR+ Bh, 

P'=3P*-5Q+6PR+ PL+6Lh + 9h", 

Q'=3@'+ Q(3P?4+4PL4+24PR+L?-8LR + 6R’) 

+12P°LR+18P°R’+ 4PL’R +10PLR’ + 36 PR’ -36L K+ 27K", 

whence A’= A’+12B, B'=4D,+AC,+ A’B-12B". 

302. It is to be noted, that though there is only one con- 
travariant conic of the fourth order in the coefficients, there 
are two covariant conics of the fifth, viz., in addition to that 

already given, that obtained by operating with the contravariant 

conic on the quartic itself, the result being 

(3L+9P+ 10R) (afx* + bgy* + chz’) 

+ (10L+4+2P+4R) (gh? + hfy’+ fgz) —12 (a f%x°+ Bg*y'+ ch'z"), 

and if this be combined with that previously given, we can write 

it in the simple form 

4R (afx’ + bgy’ + chz*) + (L— P—2R) (ghx* + hfy’ +92’). 

The discriminant of this last conic gives the simplest invariant 
of the fifteenth order, viz., writing J — P—2h= WM, 

E,=16MR'Q+4M?R’P+ MR’ + 6408"; 

or, at length, 

E,=16 (L—P-2R) QR’ + RB {3P*- 5P*L£ + 10P*R 

+ PD?—-4PLR+4PR + L’-6L’*R+76LK — 8B}, 

The other three invariants of the system of conics are, of course, 
also invariants of the quartic of the same order, besides which 

NN 
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we might also calculate 6D,, 6D,, &c. All these are expressible 
in terms of £, and £,,* where 

E,=16 (L- P-2R) @+(3P°-5P*L-6P*R 
+ PL?—228PLR — 2172 Ph’+ L°+298L°R + 2636LR°—4296 B®) Q 

4 R(-12P*4 44P*L —52P*L? + 20 PL’) 
+ R? (348P* — 852 P°L + 308PL? + 324L’) 
+ RB (1320P?— 416PL + 216L”) + 720PR* + 11376 R*— 864R. 
There are also two independent invariants of the eighteenth 
order, the first being the C, of the contravariant quartic, viz. 

F = 128 Q°+ Q’(— 48P*+ 80PL + 368PR + 32L’— 528L KR - 160K’) 

+Q(9P*-12P°L—108P°R—-2P*L’ + 324P°LR + 240P°R? 

+4PL’ + 60PLI°R—- 288 PLR’ + 528 PR’? + L*— 201° R—400L7R* 

— 2512 DR — 144R*) 4+ 18P°R—24P*DR+27P*R’-4P°LV’R 

+180P° DR’ + 60P?R+8PPR+ 114 R + 716P* LR 

+ 288P°R' + 2PL*R —44PL°R’ + 52PL°R® — 592PL Re 

+ 288PR' — 21L*R’ — 60L°R’ —720L? R* — 2076 LR + 240R*. 

F. = 1289 +@ (—8P* — 240PL —5312PR + 312L? + 9536LR 

+ 11680R") + Q (-18P* + 54P°L4+1146P°R -54P°D’— 1978P°LR 

+ 7548P*R? + 18PL’ + 262PL°R — 4432 PLR + 49272 PR 

+ 5701°R + 1620L’°R? + 6648 LA + 77808 R*) + 24P°R 

—T6P*LR —1224P*R*’ + 84P°L*R + 2622P°L RR — 13032P*R® 

—36P’°D’R—- 946P°L’R’ + 8268P* LR — 30192 P?R* + 4PL‘R 

— 822 PL°R® — 368PL*R*® — 73784 PLR — 5472 PR’ + 1140 R? 

— 15240°R°— 147120 R* — 113904. R* + 25920R*. 

It does not appear that, even in the special case we are 
considering, the invariants of higher order that we have given 
are linearly expressible in terms of those of lower order; nor 

have I been able to find that, even in this case, the discriminant 
is expressible in terms of lower invariants. 

* The values of these and of the next two following invariants were calculated 

for me by Mr, J. J. Walker. 

ay ae 



CHAPTER. VEL. 

TRANSCENDENTAL CURVES. 

303. We have hitherto exclusively discussed equations re- 
ducible to a finite number of terms involving positive integer 
powers of z and y; it remains to mention something of the pro- 

perties of curves represented by transcendental equations. Since 
these involve functions only expressible by an infinite series of 
aleebraical terms, all transcendental curves may be considered 
as curves of infinite degree; they may be cut by any right line 

in an infinity of points, and must have an infinity of multiple 

points and multiple tangents. There is, then, no room for a 

general theory of the singularities of these curves, and it 1s 

only necessary to mention the names and principal properties of 

some of the most remarkable of them. We may notice, in 
passing, a class of equations, called by Leibnitz cnterscendental, 

or which involve the variables with exponents not commen- 

surable with any rational number; for example, y=a*. Here, 

as we successively substitute for ./2 the series of rational 

fractions which approximately express the value of the radical, 
we shall find a series of algebraic curves of constantly increasing 

degree, more and more nearly resembling the figure of the 
required curve, but not accurately expressing it as long as the 

degree of the curve is finite. We pass on to the cyclord, 

which holds the first place among transcendental curves, both 
for historical interest and for the variety of its physical applica- 

tions. This curve is generated by the motion of a point on 

the circumference of a circle which rolls along a right line. 

Let A be the point where the motion commences; then (see fig. 

next page), in any position of the generating circle, if p be the 
generating point, we must have the are pm = Am, and denoting 

the angle poem by ¢, and cm, the radius of the circle, by a, we 
shall have 

y=a(1—cos®), a=a($—sing) ; 
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whence, eliminating, we shall have the equation of the curve, 

‘ +/(2ay — y’)) 
’ 

a 
a—y=a cos 

_—. 

B 

It is, however, generally more convenient to retain ¢, and to 

consider the curve as represented by the two equations given 

above. It is easily seen that the form of the curve is that 

represented in the figure; and since the circle may roll on 

indefinitely in either direction, that the curve consists of an 

infinity of similar portions, and that there is a cusp at the point 
of union of any two such portions. 

Let MPN be the position of the generating circle correspond- 

ing to the highest point of the cycloid, then, since Am = are pm, 

AM= MPN, we have Mm=pP=arc PN; or the curve is gene- 

rated by producing the ordinates of a circle until the produced 
part be equal to the corresponding arc, measured from the extre- 

mity of the diameter. Denoting the angle PCN by @, the curve 

referred to the axes AM, MN is represented by the equations 

y=a(1+cos@), x=a(@+sin8@). 

£04. We can readily see how to draw a tangent to the curve, 

for at any instant of the motion of the generating circle m (its 

lowest point) is at rest, and the motion of every point of the 

circle is for the moment the same as if it described a circle 

alout m; hence the normal to the locus of » must pass through 

m, and its tangent must always be parallel to NP. The same 

thing appears analytically for oy = aa 

gent therefore makes with the axis of # an angle the comple- 

ment of CNP, which is $¢. 

It is so easy to give geometrical proofs of some of the principal 

properties of the cycloid that we add them here. The area of the 

=cot$¢; the tan- 
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curve is three times the area of the generating circle. For the 
element of the external area ( pp’rr’=pp'tt’= PP’ QQ’) is equal to 

the element of the area of the circle; the whole external area 

therefore, AHN/'B, is equal to the area of the circle; and therefore 

the internal area ANB is three times the area of the circle. 

The are Np of the cyclotd is double NP the chord of the circle. 
For it is easy to see that the triangle PP’L is isosceles, and 

therefore that if a perpendicular, MK, be let fall on the base, 

PL, the increment of the are of the cycloid, is double PK, the 
increment of the chord of the circle. 

Hence, if s denote the arc of the cycloid, 5 the diameter of the 

generating circle, z the abscissa N@ from the vertex, then the 
equation of the curve is s* = 4bx, a form useful in Mechanics. 

The radius of curvature is double the normal. 

For the triangle formed by two consecutive normals has its 

sides parallel to those of the triangle MPA’, but the base of the 

first triangle is equal to PL, and, as we have just proved, is 

double PX, the base of the second; hence the radius of cur- 
vature is double /P. 

The evolute of the cycloid ts an equal cycloid. 

For if we suppose a circle touching the base at m, and passing 

through & the centre of curvature, it is equal to the generating 

circle, and the arc nf is equal to NP=nD; hence the locus of R 

is the cycloid described by the circle mZn rolling on the base EF.* 
N 

’ 

F ’ 

X 

A MAY, M L 
* 

\ 
’ \ 
‘ \ 
1 \ 
’ ! 
; ! 
’ H 
‘ RY} 

E ih D*< F 

* The properties of the cycloid were much studied by the most eminent mathe- 
maticians of Europe during the first half of the seventeenth century. Their attention 

was first called to these problems by Mersenne; but Galileo claims to have inde- 
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We might also seek the locus of any point in the plane of the 
generating circle carried round with it; when the point is inside 
the circle, the locus is called the prolate cycloid; when it is out- 
side it is called the curtate cycloid; these loci are by some called 
trochoids. There is no difficulty in calculating their equations or 
in ascertaining their figures, but it does not seem worth while to 
devote any space to them here. The method of drawing tangents 

given for the cycloid applies equally to these curves. These 
curves may (as the reader can easily see) be generated by a point 

on the circumference of a circle, rolling so that the are pm shall 
be en a constant ratio to the line Am. 

305. When the properties of the cycloid had been investi- 
gated, it was a natural extension to discuss the curve traced by 

a point connected with a circle rolling on the circumference of 
another. When the point is on the circumference of the rolling 

circle, the curve generated is called an epicycloid or hypocycloid, 

according as the circle rolls on the exterior or interior of the 

fixed circle; if the generating point be not on the circumference, 
the curve is called an epitrochoid or hypotrochoid. 

Let us take for the axis of x that position of the common 
diameter of the two circles which passes through the generating — 
point; let CO be any other position of it, Q the generating 

point ; let CN=a, ON=6, NCB=4, PON=¥, why d; 
then since BN = NP, we ais 
ab=by; OQM=180-($+W); 0 
and the coordinates of Q are wie M we 

y=(a+5) sing—d sin($+ 4), ot 
x= (a+b) cos6—dcos(+ WW); / 

or ifa+b=mb, 7 . a 
y=mb sind —d sinmd, 

x= mb cosh —d cosmd. 

pendently imagined the description of this curve. Galileo, having failed in obtaining 

the quadrature of the curve by geometrical methods, attempted to solve the problem 

by weighing the area of the curve against that of the generating circle, and arrived 

at the conclusion that the former area was nearly, but not exactly, three times the 

latter. The problem of the quadrature was correctly solved by Roberval in 1634; 

the method of drawing tangents was discovered by Des Cartes, the rectification by 

Wren, the evolute by Huyghens; several other important properties by Pascal. 
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Eliminating ¢ from these equations we obtain the equation 
of the curve, which is not necessarily transcendental. In fact, 

when the circumferences of the circles are commensurable, after 

a certain number of revolutions, the generating point returns to 

a former position, the curve is closed, and of finite algebraic 

dimensions; but if they be not commensurable, the generating 

point will not in any’ finite number of revolutions return to the 

same position, and the curve will be transcendental. 
To obtain the equations of the epicycloid we have only to 

make d=+0, and we have 

y=b(m sing + sinm®@), 

x=b(m cosg +cosm®) ; 

the lower sign answers to the case when the axis of @ passes 

through the generating point when it is on the fixed circle; the 

upper sign, when it is at its greatest distance from it. 

306. The coordinates for the case of the hypotrochoid and 

hypocycloid are found, as the reader can easily verify, by 

changing the sign of 4 in the equations given above. ‘These will 
be included in the equations which we shall use, by giving nega- 

a—b 
tive values to m, or by supposing m=—n, where n=——. 

b 
The equations given above, if we alter d into mb, and m 

‘ 1 
into — , become 

m 

son (- sath nab $) hes re ‘mir 

1 1 
x = mb (— cos + cos — $) 5 

and making ¢ = mvp, we see that these equations belong to the 
same locus as the preceding. We can thus prove that the same 

hypocycloid is generated whether we take 6=4(c+a). (Kuler 
de duplici genesi Epicycloidum, Acta Petrop. 1784, referred 

to by Peacock, Examples, p. 194). The hypocycloid, when 
the radius of the moving circle is greater than that of the 
fixed circle, may also be generated as an epicycloid, for then 

a—b\. ge 
m (= - — 1s positive. 
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307. Tangents can easily be drawn to these curves, for by 
the same reasoning as that used in Art. 304 the line NQ is 
normal to the curve. We can thus see also that when a curve is 

generated by a point on the circumference of one figure rolling 
on another, there must be a cusp at every point where the 

generating point meets the fixed curve. For by this construction, 
at such a point the generating point approaches the fixed curve 

in the direction of its normal, and recedes from it in the same 

direction; hence it isa stationary point. An epicycloid then 

consists of a number of similar portions, each united to the next 

by a cusp; and the extreme radii, from the centre of the fixed 
: : ea 2bar 

circle to any such portion, are inclined at an angle =e 

When the radii of the circles are commensurable and the curve 

therefore algebraic, the number of cusps is finite, but when the 

curve is transcendental, the number of cusps is infinite. Every 

point of the base is in its turn a cusp, and therefore the base 

may be said to be the locus of the cusps of the curve; but, 

obviously, consecutive points of the base are not consecutive 

points of the locus. 

308. These curves have besides, as have epitrochoids in 

general, a number of double points crunodal or acnodal, the 

number being finite for algebraic curves and infinite for 

transcendental, and all the nodal points being ranged in 

circular loci. Consider the equations (Art. 305) 

y=mb sing—dsinmd, x= mb cosd—d cosmd, 

where ¢=0, corresponds to what we may regard as the initial 

position of the generating point, viz. that where it is in a line 
with the two centres, this line being taken as the axis of x, and 

the initial distance of the origin from the generating point 
being mb—d. But there are other positions of the moving 
circle for which the generating point lies on the axis, the 
values of ¢@ corresponding to these positions being found by 
solving the equation mb sing =d sinmg. And setting aside the 
root ¢=0, the other roots of this equation are obviously dis- 
tributable into pairs equal with opposite signs, and for each pair 

the value of x, mb cosp—d cosm®@, is the same. The corre- 
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sponding points are therefore double points on the locus. The 
value mb cosf—dcosmp@ may, by means of the condition 
mb singd=d sinmd, be written in the form x sing=d sin (m—1) ¢. 

Every time that the generating point returns to a similar 
position with regard to the two centres we have a line on 
which double points lie, the number of such lines being, as 

has been stated,’ finite for algebraic curves and infinite for 
transcendental. 

309. The equations of the tangents to the epi- or hypo- 

cycloids admit of being written in a very simple form. For 

dy _ cosh+cosmp —— cos$(m+1)d sin$(m+1)¢ 

dz -—(sind+sinmd) sind (m+1)> cos$(m+1)o° 

And, attending to the condition that the tangent must pass 

through the point whose coordinates have been given in Art. 305, 
the equation of the tangent becomes 

«cost (m+i)o4+y sing (m+1)¢=(m+1)b cos4 (m— 1) ¢, 

when the axis passes through the generating point at its greatest 

distance from the centre of the fixed circle; and 

x sind (m+1)¢—y cost (m+1)6=(m+1)6 sing (m—1) d, 

when the axis of x passes through the generating point at its 

least distance from the centre of the fixed circle. 
The equation of the normal in the latter case is in the same 

manner seen to be 

xz cost (m+1)o+y sin}(m+ 1) ¢=(m—-1)b cost (m—1) ¢. 

Comparing this with the first form of the equation of the 
tangent, it follows that the evolute of an epicycloid is a similar 

epicycloid, the radii of the circles being altered in the ratio 
m— 

, or else = 

= and the generating point of the evolute being at its 

greatest distance from the centre of the fixed circle when on the 

same diameter on which the generating point of the original 
curve is at its least distance. 

The same remarks, of course, apply to the hypocycloid. 

The equation of the tangent to an epitrochoid is in like manner 

(b cosh— d cosmd) x+ (bd singd—d sin md) y 

= {mb* + d* — (m+ 1) bd cos (m — 1) d}. 

00 
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310. We give examples of some of the simplest cases where 
the equations of these curves are algebraic, and can be easily 

formed. ‘These cases are (a) when the equation of the tangent 
is included in the form 

a cos204+6 sin28+ccos8+dsinO+e=0 

the envelope of which is given, Ex. 3, p. 69; (b) when the equa- 
tion of the tangent is included in the form 

a cos 30 + b sin 30 + 3c cos 8+ 3d sin @=0, 

an envelope, which when treated by the same method as that 
just mentioned, is solved by forming the discriminant of a 
cubic equation, the result being | 

(a’+ b°)4+ 8 (ac?—bd’) — 24cd (ad—be) =3 (c*+ d’)’ +6 (a" +") (c?+d’) . 

(c) when m is a fraction whose numerator and denominator 
differ by one. If we square and add the equations 

x=mb cosnp—d cos(n+1)¢, y=mb sinnd —d sin(n+1) , 

we have xv’ +y*=m'b’ + d* —2mbd cos ¢, 

and by solving for cos ¢ from this equation, and substituting in 

the value for x, the elimination is performed. 

Ex. 1. To find the epitrochoid in general when d= mb. The equations are then 

reducible to the form 

x= 2dsink(m—1) psink (m+1) 9, y=2dsin}(m—1) pcos} (m+ 1) ¢, 

whence obviously 4 (m+ 1) @ is the angle w made by the radius vector with the 
a ge 

axis of y; and the polar equation is p = 2d sin —— aa 

Ex. 2. To find the equations of the epitrochoid and epicycloid when the radii 

of the circles are equal, and therefore m = 2. Dealing, as in (c), with the equations 

x=2bcosp—dcos2d, y= 2bsingd —dsin2¢, 

we find (a? + y? — 26? — d?)? = 40? (b? + 2d? — 2da), 

the equation of a Cartesian, having, as may be easily verified, y = 0, x= d, as a double 

point ; the curve is therefore a limagon. Wesee from the theory already explained 

that this point corresponds to the value cos @ = “ . When therefore d is greater than 

b; that is to say, when the generating point is outside the moving circle, the node 

corresponds to two real positions of the moving circle and is a crunode; but if the 
generating point be inside the moving circle, the node corresponds to no real B gas 
of that circle, and the curve is acnodal. 

The case of the epicycloid is obtained by putting d = , when we have 

(x? + y? — 367)? = 403 (36 — 22). 

The double point now becomes a cusp, and the curve is a cardioide. It is plain from 

‘what has been said that the evolute of a cardioide is a cardioide. 
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Ex. 8. To find the equation of the epicycloid when the radius of the rolling circle 

is half that of the fixed circle. The equation of the tangent is 

x cos 20 + y sin 20 = 46 cos 8, 

an equation included in the form p. 69, the envelope of which is 

(x? + y? — 467)3 = 1080422, 

Ex. 4. To find the hypotrochoid and hypocycloid when the radius of the rolling 

circle is half that of the fixed circle. We have m =—1; the equations are 

zx=fcosp+dcosd, y=bsing—dsing, 

and the hypotrochoid is the ellipse 

x2 i. a 

G+aE* G-a~® 
which reduces to the diameter y in the case of the hypocycloid where = d, 

Ex. 5. To find the hypocycloid when the radius of the fixed circle is three times 

that of the moving circle. Here m=-—2, and the equation of the tangent is of 

the form 
xcosm —y sing =) cos3q, 

and the envelope is, by the form (b) given above, 

(x? + y?)? + 8ba3 — 24bay? + 185? (x? + y?) = 2704, 

the equation of a tricuspidal quartic, the tangents at the cusps meeting at the centre 

of the fixed circle. 

This curve has been studied by Steiner as the envelope of the line joining the 

feet of the three perpendiculars on the sides of a triangle from any point on the 

circumscribing circle. In fact, taking the centre of the circle as origin, and the 

coordinates of the vertices  cos2a, r sin 2a, &c., if the point from which the perpen- 

diculars are let fall is r cos 2@, r sin 2@, the equation of the line joining the feet is 

zsin(a+B+y—$)—ycos(at+Bt+y-— 9) 
= 2 {sin(a+fp+y—3o)+sin(B+y—a—¢)+sin(y+a—B—)+sin(at+ B-y—-9)}, 
a form easily reducible to that considered in this example, 

Ex. 6. To find the hypocycloid when the radius of the fixed circle is four times 

that of the moving circle. We have here m=— 8; the equation of the tangent is 

xz sing + y cos = 26 sin2¢, and that of the envelope at + y = (4b)8, 

311. The equation of the reciprocal of an epicycloid is 
readily obtained, for the tangent being 

x cos$(m+1)¢+y sing (m+ 1) P6=(m+1)b cos} (m—1) d, 

it is plain that the perpendicular on the tangent makes an 
angle £(m+1)@ with the axis of x, and that its length is 
(m+1)b cos} (m—1) $; the locus, therefore, of the foot of this 
perpendicular is | 

, m—1 
p=(m+1)b cos("— w), 

and the reciprocal curve is 
m—1 

p cos( w) =(m-+1)b. 
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The radius of curvature is found by the formula R= oe 

In the original curve we have 
=a ty? =D" {m+ 1+ 2m cos (m — 1) d}, 

or p' =0? (m— 1)’+4mb’* cos’ $ (m—1) 4, 

ae Rappers c 4in 

eon (m+ 1p? ° 

Hence ye sic ¥ 
. — (m+ 1? 

312. Another general expression for the radius of curvature 

in roulettes (or curves generated by a point on a rolling curve) 

may be found as follows: Let P, P’ be two consecutive points of 

the curve, M the point of contact of the rolling with the fixed 
curve, and # the centre of curvature; then PP’, the element of 

the arc of the roulette, is= WP. PMP’; but, by considering the 

curves as polygons of an infinite number of sides, we can see that 

PMP’, the angle through which PY turns, is equal to the sum 

(or difference) of the angles between two consecutive tangents to 

the fixed and to the rolling curve. Hence, if do be the element 
of the arc of the roulette, ds the common element of the ares of 

the fixed and generating curves, p and p’ the radius of curvature 

of each, we have 

do = MP (= +"), 
pp 

but this element, do, is also equal to PA, the radius of curvature, 
multiplied by the angle between two consecutive normals; and 

if we call @ the angle O.MP, between the normals to the roulette 

and to the fixed curve, then the angle between two consecutive 

normals to the roulette is 

cos dds 

MR 

MP+ME 1 (; *) 
? ——— MP.MR ~ cos \p' p’ 

* The invention of epicycloids is attributed to the Danish astronomer, Roemer, 

who, in the year 1674, was led to consider these curves in examining the best form 

for the teeth of wheels. The rectification of these curves was given by Newton, 

Principia, Book I., Prop. 49, 
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MP? (- + ~) 
and PR : a 

uP (- + 7) _ “ey 

(See Liouville, vol. x, p. 150.) 

313. A large class of transcendental curves is obtained by 
taking the ordinate some trigonometrical function of the abscissa. 

There is no difficulty in deriving the shape of such curves from 
their equation. For example, y=sinz has positive and constantly 

increasing ordinates until e=47; the ordinates then decrease in 
like manner until 2=7r, when the curve crosses the axis at an. 

angle of 45°, and has a similar portion on the negative side of the 
axis between w= and x=27. ‘The curve, therefore, consists 

of an infinity of similar portions on alternate sides of the axis. 

So again, y = tana represents a curve, of which the ordinates 

increase regularly from «=0 to e=47, when y is infinite, and the 

line x=47 an asymptote. For greater values of x, y alters from 

negative infinity to 0 when a=7. ‘The curve then consists of 

an infinity of infinite branches, having an infinity of asymptotes, 
x=41n, «= 8m, &., and, as may be readily seen, points of 

inflexion at 2=0, x=, x=2, &e. 

In like manner the reader may discuss the figure of y =secz, 

which also consists of a number of infinite branches, only that 
each branch, instead of crossing the axis, as in the last case, lies 

altogether at the same side of it. The branches lie alternately on 

the positive and negative sides of the axis of a. ‘l’o the same 
family belongs a curve called the companion to the cycloid. It is 

generated by producing the ordinates of a circle, not as in the 

case of the cycloid, until the produced part be equal to the are, 

but until the entire be equal to the arc. If, then, the centre be 
the origin, the curve is represented by the equations 

y e=acos0, y=al0, x=a cos = 5 

a curve of the same family as the curve of sines. 

314. Next, after curves depending on trigonometrical, we may 

mention those depending on exponential functions, ‘The loga- 

rithmic curve is characterized by the property that the abscissa is 
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proportional to the logarithm of the ordinate, and its equation 
therefore is 

x=m logy, or.y=a’. 

The curve then has the axis of x for an asymptote, since, if 

x=-—0; y=0, it cuts the axis of y at a distance equal to the 

unit of length, and w and y then increase together to positive 
infinity. The subtangent of the logarithmic curve is constant; 

ydax 
dy 

Some controversy has arisen as to the proper interpretation 
of the equation of this curve y=e". Attention was at first only 

paid to the branch of the curve on the positive side of the axis 

of «x, arising from taking the single real positive value of e”, which 

corresponds to every value of x Kuler, in his Analysis Infini- 

torum, II. p. 290, contended for the necessity of attendine to the 

multiplicity of values which the function admits of; and the 

same subject has been more fully developed by M. Vincent 

(Gergonne’s Annales, vol. xv. p. 1). Thus, if x be any fraction 
with an even denominator, ¢° has a real negative as well as a 

positive value, and therefore there must be a point corresponding 

to this value of 2 on the negative side of the axis, but there is 
no continuous branch on that side of the axis, since, when z is 
a fraction with an odd denominator, e° can have only a real 

positive value. The general expression, including all values of 
the ordinate, is found by multiplying the numerical expression 

for e”, by the imaginary roots of unity, whose general expression 

is cos2mam +7 sin2max7, where m must be made to receive in 

succession every integer value, and 7, as usual, denotes /(— 1), 

This is equivalent to saying that the equation y=e* must be 

considered as representing not only one real branch, but also an 

infinity of imaginary branches included in the formula y=e"C"™™, 

Any one of these imaginary branches contains a number of real 

points where it meets the branch y=e"°°", and which must 
be considered as conjugate points on the curve. There are an 

infinity of such points, all lying either on the real branch of the 
curve, or on the similar branch on the negative side of the axis 
of z The latter branch is curious, since, though every point of 
it may be considered as belonging to the logarithmic curve, no 

two points of it are consecutive to each other, for two consecu- 

for its value, being in general , becomes for this curve =m. 
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tive points will belong to different branches. There is thus 

formed what M. Vincent calls a “courbe pointillée.” In one 
point, however, M. Vincent appears to me to have fallen into a 

grave error. He says that the points of this branch are to be 

carefully distinguished from conjugate points; for that at a con- 

jugate point the differential coefficients have imaginary values, 
but that at one of these points, on the negative side of the axis, 

the differential coefficients, being all equal to e”, are all real, and 
only differ in sign from those of the corresponding points on the 

positive side of the axis. It is truly astonishing that M. Vincent 
should have failed to observe that if the differential coefficients 

were all real, it would follow from Taylor’s theorem that the 

next consecutive point must be a real point on the curve, and so 
that the negative branch would be an ordinary branch of the 

curve. But, in fact, any one of these negative points must be 
considered as belonging to a branch whose equation is of the 

form y=e@O"™™, and the corresponding differential coefli- 
cient will be y(1+2mm). Considering, then, an acnode in 

general as the intersection of imaginary branches, in the same 
manner as a crunode is the intersection of real branches, the 
points here in question being points of intersection of imaginary 

branches seem properly regarded as acnodal. We have already 

seen that a transcendental curve may have an infinity of nodes 

or acnodes, and, in the case of epitrochoids, that such points may 
be ranged in a discontinuous manner on certain loci.* 

315. The catenary is the form assumed by an inelastic chain 

of uniform density when left at rest. Very simple mechanical 

considerations lead to the property, which we shall take as the 
mathematical definition of the curve, viz. that the arc, measured 
from the lowest point, is proportional to the tangent of the 

angle made with the horizontal tangent by the tangent at 

the upper extremity. If, then, the axes be a vertical and a hori- 

zontal line through the lowest point, we have sod - Now, 

* The illustration here used is Dr. Hart’s. Some objections to M. Vincent’s views, 

which are worth being considered, will be found in a paper by Mr. Gregory, Cambridge 

Mathematical Journal, vol. 1. pp. 231, 264. Prof. Cayley considers that e* (which he 
writes by preference exp.x) is a true one-valued function of 2, and that there is 
nothing else than the real branch, the values being those of the function 

x2 x3 
1+ itpstpost & 
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to rectangular axes the element of the are is the base of a 

right-angled triangle, of which dx and dy are the sides, or 

ds*=dx"* + dy’. By the equation of the curve we shall have, 
therefore, 

‘ , as’ cds 2 ee: Bede a S+O =e aa, dx Verte)? 

= log {24 ma 
? 

the constant being taken so that s and a shall vanish together. 

Hence 

fet ale eo Aas 
So gia ga ulead p eg Pad 

C c 

But in like manner the equation of the curve gives 

etc as’ sds 
3 = 745 dy See a 

s dy ‘/(s° + ¢°) 

Hence y’=s°+ cc’, provided we suppose the axes so taken that 

when s or x=0, y shall be =c. This value of y gives at once 

the equation of the curve, viz. : 

9 eee la _z 

\ Rage’ (e+e). 

A very convenient notation is 

4(&+eé")=cosha, 4 (e°—e~)=sinhex 

(read hyperbolic cosine and sine); we have then for the catenary 

x ae 
y= cosh — , s=csinh-. 

c 

316. We get from the equation of the curve 

Oe ee ax =} (e&-e *) , ms 

Hence we are led to the follow- 
ing construction. From the foot 

of the ordinate / draw the tan- 

gent MT to the circle described 
with the centre C and radius c; 
then MC=y, CT=c, MT= 

V(y?—c*); tan MCT =tan MTL 

v(y'—¢) = “+; hence the tangent 
c 
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PS is parallel to MZ. The same values prove also that 

PS=MT=the arc from P to the lowest point. The locus of 
the point Sis therefore the involute of the. catenary, and SN 

parallel to 7'C is its tangent, since PS must be normal to the 

locus of S, being tangent to its evolute. The involute of the 
catenary is therefore a curve such that the intercept SN, on 

its tangent between the point of contact and a fixed right line, 

is constant.* Such a curve is called the tractriz. 

317. The equation of the tractrix can be obtained without 

much difficulty. For the length between the foot of the ordinate 
from § and the point N is /(c’—y’); it also is, by making y =0 

in the equation of the tangent, — ee Hence the differential 

equation of the curve is 

which at once is made rational by putting 2’ =c’— y’, and gives 

ip BIO) 0 ay: 
Co — 2 

We have then 

Bice log | Mea} yey), 

It will be readily seen that the curve consists of four similar por- 

tions, as in the dotted curve on the figure; and the construction 

of the last Article shows at once geometrically how to draw a 

tangent to the curve. 
Lhe syntractriz is the locus of a point Q on the tangent to 

the tractrix, which divides into portions of given length the 

constant line SN. Let the coordinates of the point on the 

tractrix be ’y’, of those on the required locus zy; let the length 

QN =d, then we shall have 7’d=yc; and 

V(e—y")-V(@—-y)=2-2'; 

* The form of equilibrium of a flexible chain was first investigated by Galileo, who 

pronounced the curve to be a parabola. His error was detected experimentally in 1669 

by Joachim Jungius, a German geometer; but the true form of the catenary was only 

obtained by James Bernoulli in 1691. Gregory (in his Examples, p. 234) refers to 

what would seem to be an interesting memoir by Professor Wallace on this curve 

(Edinburgh Transactions, vol, XIV. p. 625). 
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and since, by the equation of the tractrix, 

xe’ +(?—- y”)=c log are M, 

that of the syntractrix will be 
; d -y¥ 

e+ /(d’—y")\=c log | aa J : ; 

The tractrix is a particular case of the general problem of 
equi-tangential curves, where it is required to find a curve such 

that the intercept on the tangent between the curve and a fixed 
directrix shall be constant. 

318. The problem of curves of pursuit was first presented 
in the form-——To find the path described by a dog which runs 
to overtake its master. It may be stated mathematically as 

follows: The point A describes a known curve, and it is re- 
quired to find the curve described by the point B, the motion 
of which is always directed toward A. We suppose both 
points to move with uniform velocities, and A to move along 
a right line which we take for axis of y.* The intercept made 

by the tangent on this axis of y is y — x = , and by hypothesis 

the increment of this is to be proportional to the increment of 
pee 

the arc, or putting A =, 

—- dp =h /(1+ p’) da, 

log 2+ log {p+ (14+p’)}+log A=0, 

2p = Ata" — Az’, 

A ie ET dg 

This curve will then be algebraic, except in the case when 4=1, 
—n+1 

when we have to substitute log x for — eeu s 

319. The cnvolute of the circle is another transcendental curve 
whose equation can be obtained without much difficulty. This 

* See Bouguer, Mémoires de 1 Académie, 1732, Correspondance sur U école polytech- 

mique, 11. 275. St. Laurent, Gergonne’s Annales, x111, 145. 
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is equivalent to the following problem: “If on the tangent at 
any point P of a circle there be taken a portion PQ, such that 
it shall be equal to the arc AP measured from any fixed point 

A; to find the locus of Q.” Let the radius of the circle=a, 
the centre being C and the radius vector 
CQ=p; lett PCA=¢, QCA=0. Then \ 
PQ=(p’—a’); and it also =a¢ by hy- e 
pothesis ; but lo a] 

=n Bd cos? —. 
? p 

Hence the polar equation of the locus is 
2 2 

v(p'—@) po @ + cos” . RN 

a p 
The involute of the circle is the locus of the intersection of tan- 

gents drawn at the points where any ordinate to CA meets the 
circle and the corresponding cycloid having its vertex at A. 

320. We shall conclude this Chapter with some account of 
spirals. In these curves referred to polar coordinates, the radius 
vector is not a periodic function of the angle, but one which 

gives an infinity of different values when we substitute w= 0, 

wo=27r+6, o=4r+6, &. The same right line then meets 

the curve in an infinity of points, and the curve is transcendental. 
Let us first take the spiral of Archimedes, which is the path 
described by a point receding uniformly from the origin, while 

the radius vector on which it travels moves also uniformly round 

the origin. The polar equation of the curve is then 

p =a. 

This spiral is the locus of the foot of the perpendicular on the 
tangent to the involute discussed in the last Article. For, from 

the nature of evolutes, the tangent to the locus of @ is per- 

pendicular to PQ; and the length of the perpendicular on 
that tangent from C will =PQ=ad, and ¢ is the angle this 

perpendicular makes with a fixed line. Hence, too, the reci- 

procal of the involute is the hyperbolic spiral pw =a, which we 
shall discuss in the next Article. The spiral of Archimedes is 
one of a family included in the general equation p=ao’, in all 
which the tangent approaches more nearly to being perpendicular 
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to the radius vector the further the point recedes from the origin. 

For — = - ; therefore (Art. 95) the tangent of the angle made 

by the radius vector with the tangent increases as w increases, 
but does not actually become infinite until @ is infinite, 

321. We have just mentioned the equation of the hyperbolic 
spiral pw=a. ‘This spiral has an asymptote parallel to the 

line from which » is measured; for the perpendicular from any 
a sin@ 

point of the spiral on this line is p sinw = , which, when 

w vanishes, and p becomes infinite, has the finite value a. Or, 
again, we might calculate the length of the perpendicular from 

the origin on the tangent. The tangent of the angle made by 

the radius vector with the tangent is ae =—w; hence the 
p 

; ap : Hy 
perpendicular 8 Ta +p) which, when p becomes infinite, is 

=a. The form of the curve is 
then as here given. ‘The polar A 

subtangent of the hyperbolic spiral 

is constant. The are AB of the 
circle described with the radius 

OA to any point of the curve is oY B 

obviously constant. 

Another spiral worth mentioning is the litwus po=a; 

this also has an asymptote, viz., the line from which @ is 

measured; for the distance of any point of it from this line, 

a’ sin® 
, decreases indefinitely as p increases, and p sino = 

consequently diminishes. 

322. We shall mention in the last place the logarithmic 

spiral, p=a®. In this curve p increases indefinitely with w; when 

w is 0 it =1, and diminishes further for negative values of @, 

but it does not vanish until w becomes negative infinity ; hence 

the curve has an infinity of convolutions before reaching the 

pole. One of the fundamental properties of this curve is, that 

. 2 d 
it cuts all the radii vectores at a constant angle, for abi becomes 
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the modulus of the system of logarithms which has a for its 

base; the angle, therefore, made by the radius vector with the 
tangent always has this modulus for its tangent. From this 
property we at once obtain the rectification of the curve ; for if 

we consider the elementary triangle which has the element of 
the are for its hypothenuse, and the increment of the radius 

vector for one side; we see that the element of the are is equal 
to the increment of the radius vector multiplied by the secant 

of this constant angle, and hence that any are is equal to the 

difference of the extreme radii vectores multiplied by the secant 
of the same angle. ‘The entire length, measured from any point 

P to the pole being p sec@, is constructed by erecting at the 
pole O@ perpendicular to OP to meet the tangent at P; 

PQ will then be the required length. The locus of Q will 

evidently be an involute of the curve, but the angles of the 

triangle OPQ being constant, OQ is proportional to OP, 

and it makes with OP a right angle; the locus of @Q is 
therefore also a logarithmic spiral, constructed by turning round 

the radii vectores of the given curve through a right angle, 

and altering them in a fixed ratio. Conversely, the evolute 
of a logarithmic spiral is a logarithmic spiral. The locus 

of the foot of the perpendicular on the tangent is likewise a 
logarithmic spiral, for it also bears a fixed ratio to the radius 

vector, and makes with it a constant angle. The caustics by 
reflexion and refraction, the light being incident from the pole, 
are likewise logarithmic spirals.* 

* The logarithmic spiral was imagined by Des Cartes, and some of its properties 

discovered by him. The properties of its reproducing itself in various ways, as stated 

above, were discovered by James Bernoulli, and excited his warm admiration. 
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CHAPTER VIII. 

TRANSFORMATION OF CURVES. 

323. HAvING in former parts of this work explained par- 
ticular methods by which the properties of one curve may be 
derived from those of another, such as the methods of Projection, 
of Reciprocal Polars, of Inversion, &c., we purpose in this 

chapter to consider the general theory of such methods. In 
such methods we have in general to consider the correspondence 
of two points P, P’ which may be either in the same plane or in 

different planes. In the latter case the two planes may be 
regarded as existing in a common space, and the two points 

P, P’ may be connected by geometrical relations in such space. 
For example, in the method of Projection the line joining the 
points P, P’ is subject to the condition of always passing through 
a fixed point. O. Similarly, we should have another system of 

transformation if the line PP’ were subject to the condition of 
always meeting two fixed lines; and so forth. The development 
of such theories belongs to solid geometry; here we consider the 
two planes as existing zrrespectively of any common space. To 
take the simplest example, suppose that we have a pair of axes 

in one plane, and another pair of axes in the other plane; and 
that the coordinates of P referred to the first pair of axes are to 
be always respectively equal to the corresponding coordinates of 
P” referred to the second pair of axes, we have evidently a system 

in which to any point P in the first plane corresponds a point P” 
in the second, and vice versa. 

The two planes may be regarded as superimposed one on the 
other, and so as forming a single plane. Supposing this done, 
there will be theorems dependent on the superimposition of the 

two planes; besides these there remain the theorems which 
existed when the two planes were distinct, and the theory is not 
really altered. Or, to express this otherwise, instead of two 
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figures in different planes, we have two figures in the same 
plane, where by the word figure is meant any system of points, 
lines, or curves; or, it may be, all the points of the plane. ‘The 

kind of transformation chiefly studied has been the rational 
transformation ; viz., where to a given position of P corresponds 

in general a single position of P’, and to a single position of P’ 
a single position of P. The most simple instance of this is the 
linear or homographic transformation, which we proceed to 
consider in detail. 

LINEAR TRANSFORMATION, 

324, Let the coordinates of P referred to any system of 
axes in the first plane be x, y, 23 and let those of P’ referred 

to any system of axes in the other plane be a’, 7’, 2’; then 
the correspondence of the two points is said to be linear if 
the latter coordinates are proportional to linear functions of the 
former 

aeiy:2=axntbytce: dat Vy+cz2:a"at+b'y4+c"2, 

by solving which equations we have evidently also linear 
expressions for x, y, 2 in terms of a’, 7, 2’, 

w:y:2= Ax + By +Ce: Ao’ + By +02: Ae 4+ BY 4 Cw. 

It is easy to see that, properly assuming as well the funda- 
mental triangles as the ratios of the implicit constants, these 
equations may, without loss of generality, be written in the form 
x: 4:2 =«:y:2. Thus then to any position of either point cor- 
responds a single position of the other. If P describes any curve 
¢ (x, y, 2) =0, by substituting in this equation the values of x, y, z 

just written, we obtain the equation of the curve described by 
P’. This latter equation is evidently of the same order as the 

former ; therefore, to any curve in one plane corresponds a curve 

of the same order in the other; in particular, to a right line 
in one plane corresponds a right line on the other. It is 
also obvious, that to a node or cusp on one curve will answer a 
node or cusp on the other, so that two curves corresponding in 
this method will have the same Pliickerian characteristics. Since 

x’, y’, 2 expressed in terms of x, y, 2 contain each three con- 

stants, there are nine constants employed in this method of 
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transformation; but since we are only concerned with the 
mutual ratios of x’, y’, 2’, one constant may be divided out, and 

the method of homographic transformation is to be regarded as 
involving eight arbitrary constants. 

325. To a pencil of four lines meeting in a point corresponds 

a pencil whose anharmonic ratio is the same. For it was shewn 
(Conzcs, Art. 59) that the anharmonic ratio of four lines a — 8, 

a—/lB, a—mB, a—n§, is a function only of kh, 1, m, n, and 

therefore is the same as the anharmonic ratio of a — kf’, &c. 

Similarly to four points on a right line correspond four points 
whose anharmonic function is the same. And it hence appears 

how given any four points of the first figure and the correspond- 

ing points A’, B’, C’, D’ of the second figure, we can construct 

the point P’ which corresponds to any other point P of the first 

figure. For the anharmonic ratio of the pencil A’ (B’, C’, D’, P’) 

is equal to that of the pencil A (B, C, D, P), and we can hence 

construct the line A’P’; similarly we can construct BYP’, C’P’, 
YP", and the four lines will of course meet in a point which is 

the point P’. The construction is applicable whether the two 

planes are distinct or superimposed. 

326. Let us now suppose the planes superimposed, and in- 

vestigate another geometrical construction to express the relation 
between corresponding lines and points. Let A,B, C be the ver- 

tices of the triangle formed by the lines x, y, 2; and A’, B’, C’ 
those of the triangle formed by the corresponding lines 2’, y’, 2’ ; 
then since all lines through A form a system homographic with the | 

corresponding lines through A’, the locus of the intersection of 

corresponding lines is a conic. Or, analytically, since the line 

y + kz corresponds to y’ + kz’, eliminating 4, the locus of inter- 

section is yz’=y’z. In like manner all lines through B and 
through C meet the corresponding lines on the fixed conics 

ze’ —az’, xy’— ya’. The construction thus assumes that in 
addition to three pairs of corresponding points A, A’; Bb, B’; 
C, C’, we are given three fixed conics each passing through a 

pair of corresponding points; and the form of the equations 

> ae 7 te 3 shows that these three conics have also three 
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common points. In order then to construct the point of the 
second system corresponding to ay point P of the first, let 
‘the line PA meet the curve yz — zy’ in the point J, then ‘AF 

is the line corresponding to PA; similarly, let PB, PC meet 

respectively the conics za’ — az’, ay’—yzx’ in points G, H; and 

BG, C’H will be the respectively corresponding lines. The 

three lines A’, B’G, C’H will have a common point P’, which 

will be the required point corresponding to P. The line cor- 

responding to any given one is constructed by constructing for 

the points corresponding to any two points on it. 

327. In the foregoing method the relation between two 
points is in general not reciprocal; that is to say, if to P in the 

first system corresponds P” in the second, it will not be true that 
to P’ considered as a point in the first will correspond P in the 

second. In fact, if we consider P as belonging to the second 

system, we construct the corresponding point, as in the last 

article, by joining P to A’, B’, C’: let the joining lines meet 

the respective conics in 2”, G’, H’; then to PA’, PB’, PC’ will 

correspond lines in the first system AZ”, BG’, CH’ meeting in 

a point P” which will ordinarily not be identical with P’. 
Consider, however, the three points LZ, IM, N which are 

common to the three conics y’z—2’y, 2a@—a’z, ay—y'x, then 

the construction shews that to the lines LA, LB, LC, answer 

respectively the lines L.A’, LB’, ZC’. It follows that the two 
systems have common the three points L, M, N; each of these 

' points, considered as belonging to one system, having itself as 

the corresponding point in the other system. In like manner 

the lines joining these points are evidently the same for both 

systems. And starting with the points Z, M, N as given, then 
if we have a single pair of corresponding points we can at once, 

in virtue of the theorem, Art. 325, construct the point in either 
system corresponding to any point whatever of the other system. 

If we express the equations in trilinear coordinates, assuming 

these three lines ZW, MN, NZ as lines of reference, then since the 

equations in the second system, answering to e=0, y=0, z=0 in 
the first, are still to represent the same lines, they can only differ 
from these by constant multipliers, and must be of the form 
le=0, my=0,nz=0. Thus, then, by a suitable choice of lines 

QQ 
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of reference, homographic correspondence. may always be 

expressed in the form that to any point 2’, y’, 2’ in the first 
system corresponds the point lx’, my’, nz’ in the second; and 
homographic transformation is then effected by writing in the 

equation of any curve lr, my, nz instead of x, y, 2 respectively. 
We cannot here, as in Art. 324, write #39: 2’ =a:y: 2, for 
the two figures would then be identical. 

3828. The method of Projection is a case of this homo- 
graphic transformation. In this method the line joining any 

two corresponding points passes through a fixed point, viz., 

the vertex of the projecting cone; and any two corresponding 

lines intersect on a certain fixed line, viz., the intersection of 

the two planes of section. If one of the planes were turned 
about this line so as to be brought to coincide with the other, 

the figures would still have the property that the line joining 

two corresponding points would pass through a fixed point; 

for consider the triangles formed by three pairs of corresponding 

lines ; and since the corresponding sides intersect in a right line, 

the lines joining corresponding vertices meet in a point. It is 

easy to form the most general equations of such a system. Let 

ax + by +cz=0 be the equation of the line on which the cor- 

responding lines intersect, then it is evident that the equations 
be Re of x’y’z’ (the lines corresponding to xyz) will be of the form 

x =aua+by +cz =0, 

y =ax +b y+cz =0, 

2 =ax +by +¢z2=0, 

a system involving three constants less than in the general case, 

and therefore only five in all. 

We shall call the point at which the lines joining corre- 
sponding points meet, the pole of the system, and the line on 
which corresponding lines intersect, the axis of the system. By 

subtracting one from the other successively each pair of the 

equations just written, it will be seen that the pole of the system 
whose equations we have written is given by the equations 

(a-—a@)x=(b-D')y=(c—Cc)z. 

The simplest forms of the equations of projective trans- 
formation are derived as follows: Any line passing through the 
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‘pole is the same for the new figure; for any two points of 

it have corresponding to them two points on the same line. 
Hence if the pole be taken at the point wy, the two lines a 

and y are unaltered by transformation; and any other line, 

Az+ By+ Cz=0, has corresponding to it, Ax+ By+ Cf=0, 
the two lines intersecting on the fixed axis, z—-€=0. Any 
line Ax+ By =’ passing through the pole evidently remains 
unchanged. 

329. Conversely, if two homographic figures in the same 

plane have the property that any corresponding lines intersect 
on a fixed axis, one of the figures may be considered as a 

projection of the other. For let the plane of one of the figures 

be turned round this axis, and consider any three pairs of 

corresponding points ABC, abc, the corresponding sides of these 
triangles intersecting in L, WM, N. ‘Then, when the plane is 

turned round, Aa, 6) must still intersect (since the lines AD, 

ab intersect in NV, and are therefore in the same plane); and by 

the theory of transversals Aa when produced is cut by 5d in the 
same ratio as before the figures were turned round. But in 

like manner Cc, and the line joining any other pair of cor- 
responding points, meets Aa in the very same point. 

330. The general homographic method of transformation, 

containing three constants more than the projective method, 

appears at first sight a more powerful instrument of research, 

and we should expect to arrive, by its means, at extensions of 

known theorems more general than those with which the method 

of Projection had furnished us. It is obvious, however, that 
if a figure were transferred bodily to some other position, we 

should have a linear transformation, in which to every line of 

the first figure would correspond a line of the second figure, but 

yet which would give us no new geometrical information. Now 
we owe to M. Magnus the remark, that the most general trans- 

formation may be reduced to a projective transformation by 

turning the figure round a given angle, and then moving it 

for a given length along a given direction; these three latter 

constants being just the number by which the transformation 
appears to be more general than the projective. 
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To see this, we must first observe, that if a” figure be moved 
in any direction without twisting, since all lines remain parallel 

to their first position, the position of every point at infinity 
remains unafiected by the operation. 

Next, let the whole figure be made to turn round any fixed 

point, and any system of parallel lines will still remain a system 
of parallel lines, although no longer parallel to its former direc- 

tion; hence, any point at infinity will still remain at infinity, and 

therefore the line at infinity is the same for the figure in both its 

positions, Moreover, since any circle will remain a circle, how- 

ever it be moved, we see that the two circular points at infinity 
will not be disturbed, no matter how the figure be moved. 

If then it be required to move a figure so as to have a projec- 

tive position with a given homographic figure, let the two circular 

points be @, w’, the two corresponding points of the second figure 

0, 0’, since no motion of the first figure can alter the position of 

w and w’, the only possible position of the required pole of the 
two figures is the point A, where the lines ow, o’w’ intersect. Let 

then the first figure be moved so as to bring the point 2, which 

corresponds to A, to coincide with it. Moreover, let the first 

figure be turned about 7 so as to bring m, mw (any other pair of 

corresponding points) into a line with 7; then we say that the 
two figures will have a projective position, and the line joining 

any other two corresponding points, 2, v, must also pass through J. 

For the anharmonic ratio of {l.@w’puyv} = {l.00’mn} (Art. 325), 

and since three lines of the system are the same for both, the 

fourth must also be the same for both. M. Magnus’s theorem 

has then been proved. 

831. There is no difficulty in expressing analytically the 

geometrical theory of the last article. Thus if it be required 

to find the coordinates of the point 7 in the case of the general 

transformation, we are, first, by the theory just laid down, to 

find the line ow joining the point (# + dy, z) to 

[jaw + by + cati(aae+bytez)}, act by +¢,2), 
this will be 

(b,—ta,) {(axe + by + cz) + t(a,e+b,y +¢,2)} 

oa {a, + b+12(b, pas a)} (a,c + boy + ¢,2) =0, 



Pe et om, 

INTERCHANGE OF LINE AND POINT COORDINATES. 301 

or (ab,— a,b) «+ (a,b, — a,b.) y + {(cb, — ¢,b) + (¢,4, — ¢,a,)} 2 

+ ¢{(a,b, — b,a,) #+ (ab, — a,b) y + (¢,b, — b,c,) 2 + (ac,—ca,) 2} =0. 
The line joining o’o’ will only differ from this in the sign of 

the quantity multiplying 7 The point required is therefore the 
intersection of the two lines found by putting the real and 

imaginary parts of the equation separately = 0. 
It is not necessary to dwell on particular species of linear 

relation, such, for example, as similarity. We only mention 
one kind of homographic relation, in which the area of any 

space on the one figure is equal to that of the corresponding 

space on the other figure. It is easy to see that such a transfor- 

mation is possible. For let the triangle formed by xyz be equal 

to that formed by x’y’2’, then, if we take any point O on the first 
figure, it will be easy to determine a corresponding point o on the 

second, such that Oxy=ox'y’ and Oxrz=oz2'2’; and therefore that 
Oyz =oy'z’; and the triangle formed by any three points OPQ 

will be equal to that formed by opg, the corresponding points 

so determined. | 
This species of homographic relation differs from orthogonal 

projection just as the general collinear relation differs from 
projection in general. 

« . INTERCHANGE OF LINE AND POINT COORDINATES. 

332. In the method of transformation just described and in 

the others to be considered in this chapter, point corresponds to 
point, and line to line; but there are transformations where a 
point in the one figure corresponds to a curve in the other 

figure. We have such a transformation in the method of 

Reciprocal Polars, in which point corresponds to line and vice 
versd. And the like is the case in the more general homo- 

graphic transformation, or say in the theory of skew re- 
ciprocals, which is as follows: Let there be any system of 
point-coordinates xyz, and a system of line coordinates aPy, 
in the same or in a different plane; then a point in the 

first system corresponds to a line in the second, if the co- 

ordinates x, y, 2 of the point are respectively proportional to 
a, 8, y, the coordinates of the line. In the same case to 
any line /e+my+nz in the first system corresponds the point 

la+mB+ny in the second. Plainly, then, to four points in 
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a line will correspond a pencil of four lines having the same 
anharmonic ratio; for the anharmonic ratio of y- lx, y—mz, 
y — nx, y — px, is the same function of J, m, n, p, whether a and 

y denote point- or line-coordinates. ‘The method now described 
may be combined with any of the other transformations described 

in this chapter; that is to say, in any of them, one of the 

systems of coordinates may be supposed to be changed from 
point- to line-coordinates; and in this way we can get all 

possible transformations in which point answers to line and 
line to point. 

333. Let us now suppose the two systems to be in the same 

plane, and let us endeavour to express the transformation 

altogether in point-coordinates. To any point 2’y’z’ is to corre- 

spond a line whose coordinates referred to a certain system of 

line-coordinates a8y are 2’, y’, 2’. But this is equivalent to 

saying that its equation is to be a X+y’/Y+2Z=0, where 

X=0, Y=0, Z=0 denote the lines joining the points repre- 
sented by a=0, B=0, y=0. And these being known lines, 

the equation of the line answering to the point a’y’z’ must be 
of the form 

ac’ (a,x 2 by a9 C,2) + y (a,x + by + C,2) + z (a,x + by + C,2) =0. 

This is an equation involving eight constants, and would 
coincide with the equation of the polar of a point with regard 

to a conic section, only if b,=a,, c,=a,, 6,=c,; the equation 

in this case involving but five constants. 

334. In the general case every point has a different line cor- 

responding to it according as the point is considered as belonging 

to the first or to the second system. Thus the equation just 
written expresses the relation between any point 2‘y’z’ of the 

first system and any point xyz on a corresponding line of the 

second system. If now the latter point be fixed, and the former 

variable, we have, for the equation of the line of the first 
system corresponding to any point of the second, 

(a, + by’ +¢,2)at+ (av + by’ + 0,2’) y + (ax + boy’ + ¢,2’) 2 =0. 

In the case of reciprocals with regard to a conic, the same 
line corresponds to a point, whether that point be considered as 
belonging to the first or to the second system. 3 
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335. In order to give, in the general case, a geometric con- 
struction for the line corresponding to any point, we shall first 

seek for the locus of the points which lie on their corresponding 

lines. ‘This is obviously 

a,x" + (a, +b,) vy + by’ + (b, + ¢,) ye + (a,+¢,) v2 4 ¢,2°= U=0, 

and is the same conic whether the point be considered as belong- 

ing to the first or to the second system. We shall call this the 

pole conic. 
Next let us seek the envelope of lines which pass through 

their corresponding points. The line Xa’ + wy’+ v2’ (where a’y’2’ 
is a point on the conic just written) touches (see Conics, 
Art. 151) 

(0, + ¢,' + 2b,c, — 4b,c,) 

+ (44,0, + 4a,c, —2a,a, — 2a,c, —2b,a, — 2b,c,) wv 

+ (a, + ¢,? + 2a,c, — 4a,c,) p” | 

+ (4b,a, + 4b,c, — 2a,b, — 2a,c, — 2b,b, — 20,c,) vr 

+ (a,’ +b," + 2a,b, — 4a,6,) v’ 

+ (4a,c, + 4b,c, — 2c,c, — 2a,b, — 2c,b, — 2c,a,) Aw = 0. 

The envelope is therefore a conic, which we shall call the polar 

conic, and which is also the same whether the lines in question 
belong to the first or to the second system. 

Using now the words pole and polar to express the kind of 
correspondence we are here considering, we have at once the 
polar of any point on the pole conic. For from that point draw 

two tangents to the polar conic: one of these is the polar 

when the given point is considered to belong to the first system ; 

the other, when it is considered to belong to the second system. 

Or, conversely, to find the pole of any tangent to the polar 

conic. We have only to take the two points where this line 
meets the pole conic; one of these points is its pole in the first, 

and the other in the second system. 
Let it be required now to find the polar of any point O. 

Draw from it two tangents, OT’, OT., to the polar conic. Let 
OT, meet the pole conic in the points A,A,, and let OZ, meet 
it in the points BB, Then if A, be the point in the first 

system which corresponds to O7,, and B, that which corresponds 
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to OT,, plainly A,B, is the line in the first system which 

corresponds to O, considered as belonging to the second 
system; that is, A,B, is one of the polars of 0. Similarly, 

A,B, is the other polar of O. 
Or, to find the pole of a given line meeting the pole conic in 

the points 45, from these draw tangents AP, AP,, BQ, BQ, 

to the polar conic; and if AP, BQ, be the lines in the first 

system, which are the polars of A, , their intersection gives the 

point in the first system, which is the pole of AB. And, in 

like manner, the intersection of AP,, BQ, gives the point in 

the second system, which is the pole of AB. 
The reader will readily see how these constructions reduce 

to the ordinary polar reciprocals if a,=0,, b,=c,, c,=a, The 

pole and polar conic will then coincide; the polar of any point 

on that conic is the tangent at that point, and the polar 

of any other point is the same for both systems, and is the 

line joining the points of contact of tangents from the point 
to the conic. 

336. It follows at once from these principles that in the 

general case the pole conic and the polar conic have double 

contact with each other. For, take any point of intersection, 

its two polars coincide with the tangent at that point to the 

polar conic; the two poles of this line must therefore coincide, 

and therefore the two points where it meets the pole conic must 

coincide, therefore the tangent to the polar conic at their inter- 

section must touch the pole conic also. The same thing is 

proved for their other point of intersection. Prof. Cayley has 

proved the same thing analytically, by shewing that if U=0 

be the equation of the pole conic, that of the polar conic (found 

by putting for A, w, v their values, in the equation of the last 
Article) may be thrown into the form 

{x (2,0, Ras a,b, + aC, — a,C,) Ty (6,¢, ae b,c, 7 b,, si b.a;) 

+ 2 (C1, — ,0, + c,5, at, ¢,,)}* 
5 

+4U. {@, (c,b, a b,C,) 7 a, (4,c, ge b,¢,) bi a, (,¢, i b,c,)} ae 0, 

a form which shews at once that it has double contact with U. 

aie 

“’ 3 ae 
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337. There are, in the general case, three points whose polars 
are the same with regard to both systems. For let the equations 
of the polars in each system be 

Au + py +v2=0, and Vx+ p’y+ v¥2=0, 

then the system of equations 

— ee i 

is manifestly satisfied for three points; and the theory laid 

down in the last Article shews at once what the three points are. 

For the two points of contact of the pole and polar conics have 
each the same polar in both systems, viz., the common tangents 

at these points ; and the point at which these tangents intersect 

has also the same polar in both systems, viz., the chord of 
contact of the conics. 

There are then three points which have the same polar in 

both systems; and two of these points lie on their polars, but 
the third does not. 

338. It is desirable to shew that in the constructions which 

we have given no ambiguity occurs, and that we need be at no 

loss to know, of the two poles of a given line, which belongs to 
the first, and which to the second system. 

Since two conics having double contact may always be pro- 

jected into two similar concentric conics, we use these in the 
figure for greater simplicity. 

Let A, B be the two poles of any 

tangent to the polar conic, then of the 
two poles of any other tangent J’, B’, 

A’ will belong to the first system, since 
if AL were moved round to coincide 
with A’B’, A would coincide with 4’, and B with BY. The dis- 
tinction between the points may be readily made by the help of 
the following theorem: ‘ A’B and AB’ are parallel in the case 

of two concentric conics; and by the method of projections, in 
the general case, intersect on the chord of contact of the conics.” 

Reciprocally, if we draw tangents to the polar conic from two 

points on the pole conic, we must so number them, oa,, 0a,, pb, 
RR 
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pb,, that the line joining the intersection of oa,, pb, to that of 
oa,, pb, may pass through the pole of the chord of. contact of 
the conics. 

339. The number of constants in the case of skew recipro- 
cals only exceeding by three the number of constants in the case 

of reciprocals with regard to a conic, it is natural to inquire 
whether the latter does not only differ from the former by 

displacement of the figure. It is evident, at any rate, that the 
skew reciprocal here considered is only a homographic trans- 
formation of the reciprocal with regard to a conic, and that 
therefore the use of skew reciprocals can lead to no geometric 
theorem which we might not obtain by combining the use of 
ordinary reciprocals with the method of projections. 

It is very easy to see what must be the first step if it be 
required to move the two figures into such a position that the 
polar of every point may be the same, no matter to which system 

that point be considered to belong. For, since the position of the 

line at infinity is unaffected by any displacement of the figure, 

we must begin by taking its pole in each system, and then 
moving the systems so that these points shall be brought to 

coincide. ‘The pole and polar conics will then become concentric 
and similar, this point being their common centre. 

340. Now we say, that if by turning the figures round their 

common centre O, they can be given such a position that the 
polar of any point A at infinity shall be the same line OB for 

both systems; then if the polar of any other point C at infinity 
be the line OD for the first system, it must be also so for the 
second system. For the anharmonic ratio of the four points of 

the first system ALCD is equal to the corresponding pencil 

of the second system, viz. OB.OA.OD.OX; and since three 

legs are the same in two pencils, OX must coincide with OC, 
or the polar of the pomt ) must be the same whether it belong 

to the first or second system; so also must then the polar of C. 
Since now the circular points at infinity are unmoved by any 

turning of the figure, we have only to take the two polars of 
either ‘of these points, which im general will not pass through 

the point, and turn either figure round, so as to bring these 
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polars to coincide; and then, from what has been just proved, 
the polars of every other point will coincide. 

341. We can readily obtain an expression for the ange 

through which the figure is to be turned. ‘The two figures 

being in a concentric position, and the origin being the centre, 

it is readily seen that the most general equations of the two 

polars of any point are 

(a,2° + by’) x + (aa + by’) y + ¢,= 0, 
and (a,x' +a,y') av + (b,x + b,y') y +c, = 0. 

The two polars of the point at infinity, for which y’ = 72’, are 

(a, +2b,) w+ (a, +2b,) y =0, 

and (a,+ta,)e+(b,+2b,) y=0; 

and the angle through which one of these lines must be turned 

to coincide with the other is the difference of the angles whose 

tangents are 

a, + 0, a, + ta, 
preys iets 7, Gane eee ee 

a, +b, b, + tb,’ 

as . a,—b 
but this is the real angle whose tangent is r. A i 

x 2 

342. Or the same result may more simply be obtained as 
follows: If in general the line of the second system corre- 
sponding to the point ’y’ in the first be 

(a0 + by’) w+ (a,a' + dy’) y + ¢,=0; 
then, when the second system is turned round an angle @, the 
equation of this line will become 

(a,x'+b,y') (a cosO—y sin@) + (a,x + b,y’) (a sin? + y cos@) +¢, = 0, 

or {(a, cos0+a, sin@) x +(b, cos@+ 6, sin@) y'} x 

+ {(a, cos 0 — a, sin @) x’ + (b, cos0 — 5, sin 8) y'} y + c, = 0. 

But the locus of points of the first system whose polars pass 

through «’y’, that is to say, the line corresponding to 2"y’, 
considered as belonging to the transformed system, will be 

{(a, cos? +a, sin@) x’ + (a, cos@ —a, sin@) y'} x 

+ {(2, cos@ + b, sin @) x’ +(, cos? —d, sin@) y’} y+0,=0. 
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This line will always coincide with the other, if we have 

b, cos@ + b, sin@ =a, cos@—a, sin 8; 

| a, — b, 

b,+a, 
or, as before, tan é = 

QUADRIC TRANSFORMATION. 

343. Before proceeding to the general theory, it will be in- 
structive to consider in detail one other special method, viz. when 
the coordinates of the point P’ are functions of the second degree: 

of the coordinates of P, or say in which 2:7’: 2=U:V: W. 
Thus to the lines x=0, y=0, 2=0 will answer three conics 

U=0, V=0, W=0; and, in general, to a curve of the n™ 
order will answer one of the 2n, whose equation is found’ 

by substituting U, V, W respectively for x, y, z in the given 

equation. We have already used this method, Arts. 252, 272. 

A simple example is when the relation between P’ and P is 
expressed by the equations a: y’: 2 =a": y’: 2"; then to any 

right line lde+my+nz will answer a conic lx? + my?+nz* 

touching the sides of the triangle xyz, while to a right line in 
the second figure answers also a conic in the first. To a 
conic in the first figure (a, b, c, f, g, hax, y, z)* answers the 
quartic 

ax + by + ce + 2fytat + 2gztxt + 2haty? =0. 

And, as the general equation of a conic may be written in the 
form 

Seg ie tae (ha BN ie a -} 
Fog eB OAS, Sgr gG Ighl” NE Fgh) * 

it follows that the equation of the corresponding quartic may be 

written in the form az?+byt+cz++dwt=0. It is therefore 
trinodal and has the lines x, y, z, w for bitangents. 

344, The method of transformation just described, wherein 

x :y':2=U:V: W is in general not rational. For, given 
x, y, 2 we have 2’, y’, & rationally, but when z’, 7’, 2’ are given, 

V 

yf 
represent conics having four common intersections, and therefore 

U et 
then to find x, y, z we have yy yd equations which 
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to any position of the point a’y’z’ answer four positions of 

the point xyz. If the conics U, V, W had a common point, 

this point being independent of the position of the variable 

point 2’y’2’ might be set aside; and to any position of the 

one point would answer three of the other. Similarly, if U, 

V, W had two common points; and finally, if they have three 
4 

: | AAS Vania States | ; 
common points, the conics oo P, = ae have, besides the three 

fixed points, only one other common point. The transformation 

is therefore in this case rational, and to any position of either 

point answers a single position of the other. It would be a 

mere change of coordinates, if instead of the conics U, V, W 
we took three conics of the form /1U+mV+n”W, making the 

corresponding lines le +my-+mnz our new lines of reference. 

There is therefore no loss of generality if we take for U, V, W 
the three line-pairs got by joining each of the fixed points to 

the two others. The most general rational quadric transfor- 

mation is therefore that which we have already used, Art. 283, 
where two corresponding points are connected by the reciprocal 

relations 
e:ysamya i axa say and a :y i 4 ye: 2x: wy. 

345. It was stated, Art. 283, that to the point xy will cor- 
respond any point on the line 2’ =0, &. If we transform 

any curve, to each of the nm points where it meets the line 2’ 

will correspond the point xy, which will accordingly be a n-fold 

point, or, more strictly, to each of the n points corresponds 

the direction of a tangent at the n-fold pomt. There will be 
a coincidence among these tangents should the original curve 

touch the line 2’. To a curve therefore of the n™ degree, which 
does not pass through any of the three fixed points 7/2’, 2a’, ay’, 

will correspond a curve of the 2n™ degree having the three 
points yz, zz, xy as n-fold points. Let us suppose, however, 
that the curve passes through the point 4/2’, then the line « 
must be part of the corresponding figure, and setting this aside 

the order of the corresponding curve is reduced by unity. Also 
since the line a passes once through each of the points za, xy, 

the corresponding curve will only pass through each of these 
points (n-1) times instead of m. And, in like manner, we 
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see in general that to a curve of the n™ degree which passes. 
through the three principal points, as we shall call them,. 

J, g, and fh times respectively, will correspond a curve whose 

order n’ is 2n—f—g-—h, and which passes through the three 

principal points on the other figure /’, g’, and h’ times re- 
spectively, where f’=n—g—h, gf =n-h-f, Kh =n—f—-g. 

346. It is easy to verify that the numbers thus assigned 

satisfy the reciprocal relation which exists between the corre- 

sponding curves; that is to say, that we have also 
n=2n' —f'— 9g — h'", f= n’ -g- h’, g= Pens Ag —f", h=n’ —f'-g. 

We shall shew also that the two corresponding curves have the 
same deficiency. Tor if a curve pass / times through a point, 

this is equivalent to $f(f- 1) double points, (Art. 43). Hence 
the deficiency of the first curve is 

4 {(n—1) w—2)-f(F—-1)—g (9-1) -A(h- DN}, 
and using the values just obtained for n’, f, 9’, h’, it is easy 
to verify that the number just written is equal to 

4 {(n’ —1) (Ww —2)-f (fF -1)-¢9 (9 -I)-h'(h— 1)}. 

347. A particular case of quadric transformation is the 

method of inversion, or transformation by reciprocal radius 
vectors, described Art. 122, and Conics, Art. 121 (c). In this 
method we have a fixed point O; and corresponding points P, 

FP’ lie on a line through O, at distances whose product is con- 
stant; say OP.OP’=1. ‘Taking O as origin, it is easy to see 
that the relations between the rectangular coordinates of P 
and P’ are 

ay f es pe = 545; Z 5 OM 

But these equations give 

af + ty! = 1 af taf 

x—ty’ Aer vy” 

Hence, writing 

X, Y, Z=a—ty, w+ty, 13 X’, Y’, M=a2' +, vc’ — wv, 1 

we have AL Ade BAZ) Gases 
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or the transformation is of the kind considered in this section. 
The point O is called the centre of inversion; and the circle 
whose radius is the square root of the given value of OP.OP’ is 
called the circle of inversion, and if P describe any curve, the 

curve described by LP” is called the inverse curve. 
In particular, the inverse of a right line is a circle passing 

through O; viz. if OA is the perpendicular on the line, and 
A’ the point corresponding to A, the circle is that which has 

OA’ for its diameter. ‘The point O corresponds to the point at 

infinity on the line. Again, the inverse of any circle is a circle 

(Conics, Art. 121(¢)), and in particular, the inverse of a circle C 
which cuts at right angles the circle of inversion is this same 

circle C; that is to say, the point P” corresponding to P lies on the 

same circle, which is therefore its own inverse. We give this ex- 
ample to illustrate a theory which will be more fully considered 
In a separate section, where the general theory of transforma- 

tion presents itself as a theory of correspondence of points on 

a given curve. Here confining our attention to the circle C, 
the points P, P’ on it correspond to each other; and in order 
to find the point corresponding to a given one P, we have 

only to join it to a fixed point O, and take the point where 
OP meets the circle again. 

348. To return to the general theory of inversion, it is 

obvious that two pairs of corresponding points A, A’; B, B’, 

lie on a circle which cuts orthogonally the circle of inversion ; 
and by the property of a quadrilateral inscribed in a circle, 

the line joining two points A, 6b makes the same angle with 
the radius vector OA that the line joining the corresponding 

points A’, B’ makes with the radius vector OB’. In the 
limit, if AB be the tangent at any point A, the corresponding 

tangent to the inverse curve makes the same angle with the 
radius vector. It follows immediately that the angle which 

two curves make with each other at any point is equal to the 
angle which the inverse curves make with each other at the 
corresponding point. 

The inverse is immediately formed of curves included in 

the equation p"=a" cosnw. Thus n=2, the lemniscate is the 

inverse of the equilateral hyperbola; n=4, the cardioide is the 
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inverse of a parabola having the origin for its focus, &e. 

The inverse of a conic in general is a trinodal quartic, the 
nodes being the origin and the circular points at infinity. If 

the origin be the focus of the conic, the inverse is the limagon; 

if the origin be on the curve, the inverse is a nodal circular 
cubic, the origin being the node. Evidently in general to a 

circle osculating one curve will correspond a circle osculating 

the inverse curve; but if the circle passes through the origin 

the inverse will be an inflexional tangent. 

Ex. 1. The three points of inflexion of a nodal circular cubic lie on a right line. 

Hence, through any point on a conic can be drawn three circles elsewhere osculating 

the curve, and their points of contact lie on a circle passing through the given point. 

The three points will be all real when the curve is an ellipse, but if it be a hyperbony 

two will be imaginary.* 

Ex. 2. In like manner, through any point on a circular cubic or bicircular quartic 

can be described nine circles elsewhere osculating the curve, and of these circles three 

will be real and their points of contact will lie on a circle passing through the given 

point. 

Ex. 3. “The feet of the perpendiculars on the sides of a triangle from any point 

on the circumscribing circle lie in one right line.” ‘Inversely, if on three chords of a 

circle, AB, AC, AD as diameters, circles be described, the points of intersection of 

these circles with each other lie on a right line. 

‘ Ex. 4. “The circle circumscribing a triangle whose sides touch a parabola passes 

through the focus.” Inversely, if three circles be described through the cusp to ree 

a cardioide, their points of intersection with each other lie on a right line. 

Ex. 5. “Ifa right line meet a /imagon in four points, the sum of their distances 

from the node is constant.” Inversely, if a circle through the focus meet a conic 

in four points the sum of the reciprocals of their distances from the focus is constant. _ 

Ex. 6. To find the envelope of circles passing through a fixed point and whose 

centres lie on a given curve. Take the fixed point for centre of inversion, and the 

locus of the other extremity of the diameters passing through that point is evidently 

a curve similar to the given one. It is easy then to see that the negative pedal 

(Art. 121) of the inverse of this last curve is the inverse of the required envelope, 

and, therefore (Art. 122), that the envelope is the inverse of the polar reciprocal 

of that curve.t 

349. It remains to mention the cases of rational quadric 
transformation which cannot be reduced to the substitution 

xi:y:z=y2:2x: ay. Of the three points common to the 
conics U, V, W, two may coincide: let the line y be supposed 

* This theorem is Steiner’s, see Conics, Art. 244, Ex.8. The proof here given is 

Dr. Ingram’s. 

+ This example is taken from Dr, Stubbs’s me on this method, Phil. Mag. 

nis XXIII, 18, 
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to be the common tangent to the conics at the point yz, and 
let xz be the third point common to the three conics, then 
the equation of each must be of the form ax’ + 2fyz+2hxy=0; 
we may take a", yz, wy as the three conics, and the substitution 

is that used Art. 289, a: 9: 2’ =axy: 2: yz, equations which 

imply reciprocally «: y:z=a'y':x":7/2’. In this substitution, 
as in the other, to the point az’ corresponds the line y; and 

to any curve meeting this line in points will correspond a 
curve having the point as a n-fold point. To the point «wy 
corresponds the line x, but whatever be the point on this line, 
the corresponding direction of tangency will be 7’=0. Toa 

curve therefore meeting the line x in z points will correspond 

a curve having the point a2’y’ as a n-fold point, at which all 

the tangents coincide. ‘The theory, in short, is substantially 

the same as before, only modified by the coincidence of two 

of the principal points. Again, let all three points coincide, then 

(Conics, Art. 239) the equations of the three conics must be of 
the form by! + hay + 2f (y2 — me) = 0, and we are led to the 
substitution used in Art. 290, viz. x ae a oo y: ye — mi’, 
implying reciprocally a : yrt=ay iy”: ye +m2”. 

350. Before discussing the general theory of rational trans- 
formation, it is convenient to mention, in extension of what was 
stated, Art. 347, that the general substitution of X", Y", Z" 

for X, Y, Z assumes a simple form when the line Z is at 

infinity, and X, Y pass through the two circular points. For, 
transforming to polar coordinates, the equations of X and Y 
become 

p(cos@+7 sin@) =0; 

and it is obvious that substituting for these functions their n> 

powers is equivalent to substituting p" for p, and n@ for @. 
This transformation is not rational, but it may conveniently 

be applied to curves of the form p"=a" cosmo, which are 

always thus transformed to curves of the same family. For 
n=2 a circle becomes a Cassinian, and for n=4 a limacon. 
Mr. Roberts has also noticed (Liouville, x11. 209) that the 
angle at which two curves intersect is not altered by this 
transformation. For the tangent of the angle which the tan- 
gent to a curve makes with the radius vector is (Art. 95) 

SS 
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a and this is unaltered when we substitute ndw for dew 

and we for 2 Thus the theorems given as examples of 

inversion lead each to as many theorems as we choose to give 
different values to x. Theorems also concerning the angles at 
which curves cut are easily transformed by this method, as, for 

instance, the theorems that a circle is the locus of intersection 
of two right lines cutting at a fixed angle which each pass 
through a fixed point; that a series of concentric circles are 
cut orthogonally by lines through the common centre, &e, 

THE GENERAL THEORY OF RATIONAL TRANSFORMATION. 

351. We come now to the general theory of the rational 
transformation, in which to any, system of values of ayz 

corresponds a single system of values of a’y’2’; for example, 
ve :y:2=U:V: W, where U, V, W are known functions of 
x, ¥, 2, which we suppose to be of the n™ order; and, recipro- 
eally, to any system of values for 2’y2 corresponds a single 
system of values a: y:2=U’: V’: W’. When such mutual 
expression is possible, U’, V’, W’ must be also of the n™ order 

in wy'z. For to the 2 intersections of an arbitrary line 
le+my+nz with any curve aU+bV+cW will correspond, 
in the other system, the intersections of /U’+mV’+nW’ with 
the line aa’ + by’ + cz’, which must also be in number n. 

352. Let us now examine the conditions that such mutual 
expression may be possible. In general, if we are given the 
coordinates of a point in one system a : 7’: 2 =a:b:c, there 

will correspond in the other system the intersections of the 
curves U: V: W=a:b:c¢; and these will be »’ m number 
if U, V, W are general curves of their order. If, how- 
ever, U, V, W have p points common to all three, the curves 

= = 2 = 4h will always pass through these points, and there 

will be only n’—p variable points of intersection, which will be 
the points in the other system corresponding to the given point. 
Finally, if p=n*-1, there is but a single variable point of 
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intersection ; or, in other words, all but one of the intersections 
of the curves*U: V: W=a: b: c being known, the coordinates 

of the remaining intersection are uniquely determinate, and will 
thus be rational functions of a, 6, c; that is to say, of a’, 7’, 2’, 

and we have expressions of the form w: y: = U’: V’: W’. 

353. Thus, then, one condition for rational transformation is, 
that the curves U, V, W shall have n’?—1 common intersec- 

tions; but there is a further condition. The system of curves 
aU+bV+cW must be as general as the system of right lines 

ax’ + by’ +z’ to which they correspond; that is to say, a curve 
of the system must not be determinate unless two conditions are 
given to determine the two expressed constants a: b:c. The 

number of conditions, therefore, which U, V, W can be made to 

satisfy must be at least two less than the number of conditions 
necessary to determine a curve of the n™ order. For example, 

if U, V, W be cubics, and if we subject them to the condition 

of having eight distinct common points, they must also have 
a ninth (Art.29); there would be no variable point of inter- 
section, and the construction of Art. 352 would fail. But we 

can still satisfy the conditions of the problem by supposing 

the cubics U, V, W to have common one point, which is a node 
on all, and four ordinary points. These are equivalent to but 
seven conditions, since to be given a double point is only 

equivalent to three conditions (Art. 41), and therefore two more 

conditions are necessary to determine any curve aU4+bV+cW. 
But the common points amount to eight intersections, since 
a point which is a double point on two curves counts for four 

intersections. And so, in general, we cannot take U, V, Was 
curves of the » order, having n’—1 distinct common points, 
because then (n being greater than two) they would have another 
common point, and no variable point of intersection; but we 

can satisfy the conditions of the problem by taking for U, V, W 
curves having common a, ordinary points, a, double, a, triple, 

&c., in such way that these are equivalent to n’—1 intersec- 
tions, and that the number of conditions implied shall be less 
by 2 than the number necessary to determine a curve of the n™ 

order. Remembering, then, that to be given a multiple point of 
the order r is equivalent to $r(r+1) conditions, and that such 
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a point when common to two curves counts as 7” intersections, 
we have the two equations 

a,+4a,+9a,+... ra,=n'—1 00 tee 

a, +3a,+ 6a,+... 47 (r+1)a,=4n(n4+ 3) —2.... (2). 

Doubling the second equation and subtracting from it the first, 
we get an equation which may conveniently be substituted 
for (2) 

@, + 2a, + 3a, +... 70, =3 (2 —1) ....00000 20(3). 

We have then as many modes of transformation by curves of the. 
n> order as there are solutions of these equations by positive 

integer values of a,, a,, &c., provided always that the number, 
of higher multiple points which the curves are supposed to. 
possess is subject to the limitations assigned, Art. 43.* 

354. The argument of Art. 353, strictly, only shews that in 
equation (2) the left-hand side cannot be greater than the 

value there written. But we can also shew that it cannot be 

less, for add a term —¢ and subtracting equation (2) from (1) 
we get 

a,+3a,+...$7r (r—1)a,=4(n— 1) (n— 2) +4#.... (4). 

Recollecting that a triple point is equivalent to three double 

points, and an 7-fold multiple point to 4r(r— 1) double points, we 
see that the left-hand side of the equation represents the number 
of double points to which all the multiple points of any curve 
aU+b6V+cW are equivalent. And since it was shewn (Art. 42) 
that this number cannot exceed 4(n—1)(n—2), we must have. 

t=0, then equation (4) asserts that the curves of the system 

aU+bV+cW have each the maximum number of double 

points, or, in other words, that they are unicursal. And it is 
otherwise evident that this must be so, since these curves 

answer to the right lines of the other system; and not only a 
right line, but every unicursal curve will be transformed into a 
unicursal curve; for if the coordinates of a point are rational’ 
functions of a parameter, the coordinates: of the corresponding 

* This theory is due to Cremona, see his memoirs Sulle trasformazione geometriche 

delle figure piane, Mem. di Bologna, t. 11. 1863, and t. V. 1865; see also Prof. Cayley’s 

paper, Proceedings of the London Mathematical Society, vol. 111. 1870, pp, 127-180. 
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point being rational functions of these, must also be rational 
functions of the same parameter. 

355. We have seen that when n is greater than 2, the 
equations (1) and (3) cannot be satisfied if the points common 
to U, V, W are only simple intersections. We shall now shew, 

in like manner, that if 2 is greater than 5, there must be 
a multiple point of order higher than the second; and so on 

generally. Let r be the highest index; multiply equation (3) 
by 7, and subtract from it equation (1), and we have 

(r—1)a,+2(r—2) a,+3(r —3) a,+...(r-1)a,,=(n —1)(87 —n—1). 

Every term on the left-hand side is positive, therefore 7 cannot 

be less than 4(n+1). We may take r equal to this number 
in the case where 4 (+1) is an integer, that is to say, if n be 

of the form 3p — 1, we may take r=p; but if so all the numbers 

G,, @,-.., @,, must vanish, and the curves can have no common 
points but the p-fold points; and we have pa,=3 (3p —2), 
which cannot be satisfied by an integer value of a, if p exceed 3, 
unless p=6. Except, then, when n=2, 5, 8, or 17, r must 
be greater than 4(n+1); thus always for n greater than 5 there 
must be a multiple point of higher than second order. 

356. In the same manner is established a theorem from 

which we shall presently draw an important inference, viz. that 

if we take the three highest in order of the multiple points, the 

sum of their orders must exceed n. Let the orders of the 
three highest be 7, s, ¢, where s is supposed not greater than r 

and ¢ not greater than s, then transferring the terms contributed 
by the two former to the opposite sides of equations (1) and (3), 

these equations become 

a, +4a,+...04,=n7 -1—r'—s', 

a, +20,+...6%,=3n—3-1r —S, 

and, as before, we have a limit to the lowest admissible value 
of ¢ from the consideration that if we multiply the second 
equation by ¢ and subtract the first, the remainder is essentially 

positive. Our business now is to shew that n—r—s is too low 

a value for ¢, or that, in this case, 

nW—l—r'—s’>t(8n—3-—r- 5). 
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Substituting 7+ s=n- #, this becomes 

2rs—1+4+2nt—t?>t(2n—3 +42). 

But since, by hypothesis, » and s are not less than ¢, the least 
value the first quantity can have is found by putting r and s 

both =¢, when the inequality becomes 

t’ + 2nt—1> t+ 2nt—3t, 

which is obviously true. 

357. Cremona has tabulated as far as n=10 all the ad- 
missible solutions of the system of equations we have been 
considering. Some of his results will be given presently; but 
enough has been said to shew that we can always take U, V, W 
functions of the x order in xyz, such that the equations 

ea Maw ew Pa ee tae | A 

shall represent three curves having common certain fixed points, 
equivalent to n*—1 intersections (which we call the principal 
points), and one variable point, the coordinates of which ex- 

pressed in terms of a’y’z’ give the converse system of equations 

ei gies Fes Ww" 

We have already seen that U’, V’, W’ are functions of the 

n‘> order in x’y’z’, and it is plain that these also must represent 
curves having common a number of fixed points satisfying the 
conditions (1) and (2) already explained. It does not follow, 

however, nor is it always true, that the same solution of the 

system of equations is applicable in both cases; in other words, 

the system of curves aU+bV+cW which answer to the right 
lines of one system, and the system of curves aU’ +bV’+eW’ 

which answer to the right lines of the other system, have not 
in general the same distribution of multiple points. 

358. We have seen that, in the quadric transformation, to one 
of the three principal points corresponds in the other figure 

not a point but a line; and we shall now extend this theorem 

by shewing that in general to any of the a, points corresponds 
a unicursal curve of the r order. It is evident that the system 
of equations 

Gsye¥38aU2V:W 

eyes 



GENERAL THEORY OF RATIONAL TRANSFORMATION. 319 

becomes illusory if we seek the point a‘y’z’ corresponding to 

any point xyz common to the curves U, V, W. Now, first let 
this be a point of simple intersection; and, by proceeding to a 

| etl, a consecutive point, we have a’y’z’ respectively proportional to 

Ube +U,by +U,82, V,8n+V,by +V,8e, Wax + Wdy +W,8e, 
where U,, &c., denote differential coefficients. We have thus 

a different point ay’z’ corresponding to each element of direc- 

tion at the assumed point ayz. But 7¢ three curves have a 
common point their Jacobian passes through that point; as is 
evident by writing the equations U=0, &c. in the form 

Ue+UytUz=0, VerVyt+tVe=0, Wi2tWy+Wz=0, 
and eliminating a2yz. We thus see that if we eliminate dz, dy 
from the values just found for a’y’z’, dz will also disappear, and 
all the points corresponding to xyz will lie on the right line 

a (V,W,-V,W,) + (W,U,-W,U,) +2 (U,V,-0,7,) =0. 
359. We proceed in like manner if the point common to 

UVW be a multiple point. Let it, for example, be a double 
point, then the values given, Art. 358, for a’y’z’ vanish; but 
denoting the second differential coefficients as before by a, J, ¢, 
&c., we have a‘y’z’ respectively proportional to 

adz*+bdy?+cb242f8y82+29828a42hd.cby : a’ 8x74 &e. : a’ b2x"+ ke. 

But the relation of the point xyz to UV W is such as to allow of 

the simultaneous elimination from these equations of dz, dy, dz. 
In fact, the above forms in dx, dy, Oz are only in appearance 

ternary, but are really binary. For aa*+ by’+ cz’ + &c. equated 

to zero denotes the pair of tangents to the curve U at the 
double point, and is reducible to the form 

a (a — mz)” + 2h (a — mz) (y— nz) +b (y— nz)’. 

There are, therefore, but two quantities 6a — mdz, 8y—ndz to be 
eliminated between the equations, and it will practically come 

to the same thing if we write 5z=0, and eliminate da, dy. 
And so for any multiple point we have a’, 7’, 2’ proportional to 

(Goss 0 Ome DY) s. (Bo, ois 0 Ody OY) 3. (aS... FOR, Oy)"s 

and dz, dy are eliminated in the manner explained, Art. 44, 
and x’, 7’, 2 being rational functions of a parameter, are the 
coordinates of a point on a unicursal curve of the r order. 
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360. The curves in one system which answer to the prin- 
cipal points in the other may be called the principal curves, 
and these curves together make up the Jacobian of the system 
of curvesaU+bV+cW. For the Jacobian is the locus of the 
new double point on such of the curves of that system as have 

a double point in addition to the multiple principal points common 

to all. But since each of these curves has already the maximum 

number of double points, it can only acquire a new one by break- 
ing up into inferior curves, and this will happen only when the 

corresponding right line in the other system passes through one 
of the principal points. In that case the curve aU+bV+cW 

breaks up into the fixed 7'* curve corresponding to the principal 
point, together with a residual curve variable with the line 
through «,. Now, in general, if we have two unicursal curves, the 
sum of whose orders 7 and 7’ is n, the aggregate multiplicity 
arising from the singularities of the two curves and their in- 

tersections is equivalent to 4 (r— 1) (r—2)4 4 (7-1) (r’-2) +77, 

that is, to 4 (n—1)(n—2)+1 double points. Thus we see that 

in the curve we are considering, the complex curve has besides 

the principal points one new double point, which will be a point 

of intersection of the fixed curve answering to a,, with the 

residual variable curve; and the locus of such points is therefore 
the fixed curve. ‘That the sum of the orders of all these prin- 

cipal curves makes up the order of the Jacobian of the system 
aU+bV+cW is expressed in equation (3), viz. 

a, + 2a, + 3a,+...74,=3 (n— 1). 

From the general theory of Jacobians, which will be more fully 
entered into in the next chapter, it appears that the system 
of principal curves passes through each of the points a, twice, 

through each point a, five times, and through each point a, 
3r—1times. There are other theorems which it is sufficient 
to indicate as to the disposition of the principal curves with 

respect to the principal points. For instance, take a right 
line in one system which does not pass through a principal point 

a,’, then the corresponding curve aU+bV+cW can have no 
ordinary point in common with the principal curve a, and the 
intersections of the two curves would be exclusively principal 
points. In this way we can see that every principal right line 
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passes through two principal points, the sum of whose orders is 

n, and every principal conic through five principal points, the 
sum of whose orders is 2n. 

361. We are now in a position to determine the charac- 

teristics of the curve corresponding to a curve of the order &, 
which we suppose not to pass through any of the principal 
points. Evidently, if we write U, V, W for 2’, 7’, 2’ in a 

function of the £™ order, we obtain one of the order nfs; and if 
the curves U, V, W have a point @ in common, the line in the 
other figure corresponding to a will meet the curve S in & points, 
which will all correspond to a; this will, therefore, be a k-fold 

point, and similarly, every one of the principal points a, will be 

a rk-fold multiple point. If the original curve have no multiple 

points, the transformed curve will have no multiple points other 
than the principal points. ‘hus it appears that the transformed 

curve will be of the order nk, the corresponding maximum 
number of double points being 4(nk—1)(nk—2)3 and the 
principal points will be multiple points, and the number of 

double points to which they are equivalent will be 

$a,k(k—1) + $a,2h (24 —1) +...44,rk (rk —1), 

or $k? (a, + 4a, +...7°a,) —$h (a, + 2a,+...7ar), 

or, in virtue of equations (1) and (3), 

4 (n?- 1) k*-8(n-1)k. 

Substituting, the deficiency of the transformed curve is 

} (nke—1) (nk -2)— {} (n"— 1) k*— §(n—-1)}, =4 (0-1) (2), the 
same as the deficiency of the original curve. Ifthe original curve 
has multiple points other than the principle points, to these will 

correspond in the transformed curves multiple points of the 

same order, and the deficiencies of the two curves remain equal. 
If the original curve pass through any of the principal points 

a’, then for each time of passage the corresponding curve a 
is part of the transformed curve, and the degree of the trans- 
formed curve proper will be reduced accordingly. There will 

be also a corresponding reduction in the number of passages 
of the transformed curve through the principal points through 
which a, passes. ‘The effect of this will still be to: preserve 
the equality of the deficiencies of the two curves. Thus, for 

TT 
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example, if the original curve passes through one of the points a,, 
the transformed curve will include as part of itself a right line, 

and the degree of the residual curve will be reduced from nk 

to nk- 1, and there will be a consequent diminution of nk—2 

in the maximum number of double points; so if the right 
line pass through two points «,, @,, the number of passages 
of the residual curve through these will be each reduced by 1, 

and the number of equivalent double points will be reduced 

by sk—1 and tk—1, or by nk—2, since s+t=n. It is unne- 

cessary to enter into more detail, because we shall presently 
arrive at the same results by another method. 

562. Every Cremona-transformation may be reduced to a 

succession of quadric transformations. Consider the most general 

transformation in which to the right lines of one figure 

answer in the other figure curves of the x order having 

in common @, ordinary points, a, double points, &c. We have 
seen (Art. 356) that there are three of those points, the sum of 

whose orders exceeds n. ‘Take these as principal points 
and effect a quadric transformation, the degree of the trans- 

formed curve, being 2n—r—s-—#, is less than n. In like 
manner, by a new quadric transformation, we can reduce the 

degree of that curve; and so on until we have at length right 

lines corresponding to the curves of the n™ order. Since it was 

proved (Art. 346) that the deficiency is not altered by any 

quadric transformation, the theorem of this article shews that 
it is not altered by any Cremona-transformation. The following 

particular example will illustrate the method, and will shew how 

we can trace the disposition of the principal curves. Consider the 

transformation in which right lines are transformed into quintics 
having three ordinary points a,a,a,, three double points 0,5,4,, 

and one triple point c. ‘l'ake cb,b, as principal points, and by a 
quadric transformation the quintics become cubics, having 0,’ as 
a double point, and a,a,a,c’ as ordinary points. Again, take 

a,b,c’ as principal points, and apply a new quadric transfor- 
mation when the cubics become conics passing through a,”a,"b,”, 

and finally, a new transformation with these for principal points 
brings them to right lines. In like manner we can see how 

are transformed the right lines of the first system, or, more 
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generally, how are transformed curves of the £* order passing 

a, times through the point @,, &c. After the first transformation 
we have ; 

kh =2k-c—b,-b,, 

¢ =k-b,-b,, : 

b/ =k-—c—}b,, b,=k—c—b,, b, =),, 

G, $4, 4 =4,, a, =4,. 

After the second transformation, in which a,’b,’c are the principal 
points, we have 

kA” =3k—2c—a,—b,-—b,-),, 

e” =2k—c-a,—b,—b,-8,, 

b,” =k—c—b,, b,’ =k-c—a,, 6,’ =k—c-b,, 

a,’ =k—c-—}b,, a,"=a, a,’ =a, 

Lastly, after the third transformation, the principal points being 
a,a,"b,”, we have 

K” = 5h — 30 — 2b, — 2b, — 2b, — a, — a, — 

é” =2k—c—b,-b,-b,-a,, 

a” =2k—c—b, —b,—b,—a,, af” =2k—-c—b,— b,—b,—a,, a,” =k—c—b,y 

bf’=k—-c—-b,, b,/’=k—c-b,, bf” =38k—2c—b,—b,—b,- a,—4,— a. 

And if we put k=1, and the other letters =0, we see that right 

lines are transformed into quintics having common one triple, 
three double, and three single points. Again, in order to trace 

the correspondence of the principal points, we see that in the 
first transformation to the point c corresponds the line 4,’, },'; 
to this in the second transformation corresponds a conic through 

e"a,'b,"b,"b," ; and finally, to this a cubic having 6,”’ as a double 

point, and the remaining six points as ordinary points. ‘The 
following tables give the effects of the different kinds of 

Cremona-transformation as far as n=6. ‘The values also in- 
dicate the curves answering to the principal points. ‘Thus, in 
Ex. 3, the value c= 3k—2c— (a) indicates that to c’ corre- 
sponds a cubic having ¢ as a double point, and passing through 
the points a. 

Ex, 1. (i) #32, ea, = 8; 

er i gee Bey 4 Po ae ee ki = 2k —a,—a,—a3, W =kh—-a,— dy, a) =k—az;—a, a,’ =k-a,—a, 
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ex. 2. (IL) «= 3, a, + 4,0, 1. 

k! = 8k — 2b — a, — a, —a3—, b' = 2k —b — a, — a, — 3 — Ay, 4,’ =k —b — a4, ke. 

Ex. 3, (IV. 1) n=4, a,=6, a,=0, a,=1. ? 

k’ = 4k — 8c — & (a), ce’ = 8k — 2c — XZ (a), pia ccethy &e. 

Vk. 4. (V.2) #24 ek 2 8. 
k’ = 4k — 22 (b) — (a), ' = 2k — 2 (6) — a, — a, D,.'= ke, a,'=k —b,—b,, ao’ = ke. 

Hx.:5. (V. 1) w= 5, a, = 8, a= 0, a, = 0,4, = 1. 

kb’ = 5k —4d—& (a), d’=4k— 38d —2 (a), a’ =k-—d—a,. 

Hx..6..(V.2) o= 5, ap 0, ee 8, =, 

K’=5k—e—2 (b)—Z (a), C= 38k —2c—Z (b)—E (a), b)’=2k—c—a,—= (6), ay’=k-c—),. 

a7. (¥.8) 2b, a, =), a = %, | 

k’ = 5k — 2 (6), b,' = 2k — b, — bg — 0, — 5, — Dy, &e. 

ma. 8, (VE, 1} a6, a, = 10, my oh 

k’ = 6k — 5e ~ = (a), e’ = 5h —4e—X (a), a,’ =h—e— ay, ke. 

peed. (71. 2).0=86, a, =1, 4,54, a = 32, 

kK’ = 6h — 8E (c) — 2 (4) — a, oe,’ = 8k — 2c, — cg — 2 (b)—a, 

by =2k-Z (c)-—b,-—b,—by, a’ =k—X(c). 

Mx. 10. (VI. 8) a=6, «,=4, a, — 1, a, =8. 

i’ = 6k —8E (ce) —26 -Z (a), d =4k — 22 (ce) —b—-Z (a), 

b,’=2k-Z (c) —b—a,', b,,=&e., b,’/=ke., b= &e., a,’=k—c,—Cy, a,'= &e., ag= ke, 

mex 3d. (Vi 4) aes, a, = 3, = 4, ag 0, oO, 1: 

k’ = 6k — 4d — 2 (b) — & (a), ¢,! = 8k — 2d — Ed (b) — a, — ay, Cy’ = ke, ¢,/ = ke, 

b’ = 2k -—d—X(b), a,’ =k-—d—b,, a,’ = &e., a,’ = &e., a, = be. 

TRANSFORMATION OF A GIVEN CURVE. 

363. The conditions assigned in the last section are neces- 
sary for the general rational transformation between two planes, 
so that to any point in either plane shall correspond a unique 
point in the other. But they are not necessary to rational 

transformation, if we consider only: the transformation of a 
given curve S=0. Let us apply to the curve S a transforma- 

tion 2’: y’: 2 =U: V: W, where U, V, W are functions of the 
n> degree in x, y, 2, not necessarily satisfying Cremona’s 

conditions; then, obviously, to any point in the first plane will 

correspond a single point of the second, since 2’, y’, 2’ are given 

as rational functions of z, y, z But according to the pre- 
ceding theory, if U, V, W have common a, ordinary points, 

a, double points, &c., then to any point in the second plane will 
correspond n° — a, —4a,— &c. points in the first plane; and this 

number, which we shall call 8, will ordinarily be different from 
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unity. The locus of points in the second plane corresponding 
to the points of the curve S will be a curve S’ corresponding 

to S, and to any point P of the first curve will correspond a de- 
finite point P’ of the second. Now, from what we have just said, 

it appears that to P’ will correspond in the first figure, besides 
the point P, @—1 other points; but these points will ordinarily 

not lie on S, and the curve in the first figure corresponding 

to S’ will consist of S together with a residuary curve, the 

locus of the 9-1 points. And if we attend only to the points 
on the curve S, we see that while to any point P of S cor- 

responds a single point P’ on S’, so also to any point P’ on 8’ 

corresponds a single definite point P on S. 
Thus then, though the equations a: 7:2 =U:V: W do 

not by themselves suffice to give rational expressions for x, y, z 

in terms of 2’, y’, 2’, it is otherwise when with these we combine 

the equation S=0. If from all the equations we eliminate 
xyz, we obtain an equation S’=0, which is the condition for 

the co-existence of the system of equations. And when this 
condition is satisfied, it was shewn (LHigher Algebra, Lesson X.) 
that we can in general rationally determine the values for 
x, y, 2, which will satisfy all the equations of the system. We 
see, then, that when a given curve S is transformed by the 

substitution of 2: y’: 2 = U:V: W, we can in general obtain 

a rational converse expression a: y:2=U’':V’: W’. 

Ex. Suppose that we are given 2’ :y':2’ syz+a?:yz+ay:yz+az, Here to 

right lines in the second plane answer conics in the first, having common only two 

points yx, zx; and therefore to a point in the second plane will generally answer two 

points in the first plane. The general expressions for 2, y, z in terms of a’, y’, 2’ 

are easily found by observing that «—y,x2—z are respectively proportional to 

x’ —y', x’ —2'; the geometrical meaning of which is, that the points ayz, a'y’2’, 

considered as belonging to the same plane, are collinear with the point 1, 1, 1. 

In other words, the equations are satisfied by writing c=a2’+A, y=y'+A, 

z=2'+X, where Xd is determined by the quadratic 

22+ (a’ +y'+2)rA+y'2/ =), 

and plainly to any system of values for 2’y’z’ answer two systems of values for xyz, 

But it is otherwise if we consider the transformation of a given curve. ‘Thus, take 

a right line in the first plane ax + By + yz; then the relation between any point on 

this line and the corresponding point in the second plane is given by the equations 

a=a2' +X, &c., where (a+ 8+ y) X =— (av’ + By’ + yz’). 

In like manner, if we have any conic S on the first plane, and if by the sub- 

stitution «= 2’ +A, &c., S becomes 42+ PAX +8’, then the curve corresponding 

to S is the quartic whose equation is obtained by eliminating between 

P+ BA + S'=0, 2472+ (@’ + yo’ +2) A+y'2’=0; 
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and the expression for x in terms of 2’ is obtained by taking for X the common root 

of these equations given by the equation {2P — (a + y'+2')}X +28’ —y’2’=0. 

364. The deficiency of a curve is unaltered, not only by 

Cremona’s transformation, as already proved, but by any trans- 

formation where to a point on either curve corresponds a 
single point on the other.* This may be shewn as follows: 

In the first place, it is to be observed that in the rational 
transformation between two planes, where to a point A corre- 

sponds a single point A’, if any curve pass twice through A the 

corresponding curve must pass twice through A’, or to a double 
point on one curve must correspond a double point on the 

other. But if to A correspond more points than one, A’, B’, &e., 

then if the second curve pass through both A’ and B’, the 
first curve will pass twice through A; that is to say, a double 

point on one curve may correspond to a double point, but it 
may also correspond to a pair of distinct points on the other. 

In like manner, if the points A’, B’ coincide, we may have a 

cusp on one curve corresponding either to a cusp or to a pair 
of coincident points on the other. 

Let us now consider two fixed corresponding points A, A’, 
one on each of two corresponding curves S, S’, whose orders 
we suppose to be m and m’, and which we suppose to be in 
the same plane; let us consider also two variable corresponding 

points M/, M’; and let us examine the degree of the locus of 

the intersection of the lines AM, A’M’. Now take any fixed 
position of the line AW, since it meets the first curve in m—1 

points distinct from A, there are m—1 corresponding positions 

of the line A’M’, and therefore AM meets the locus in m—1 

points distinct from A. But if we consider the line AJ’, it 

is easy to’see in like manner that it meets the locus in no 
other points than the point A counted m’—1 times, and A’ 

counted m—1 times. Thus we see that the locus is of the 

* This theorem was first derived by Riemann from the theory of Abelian 

functions ; see Crelle, L1v. 1383. The proof here given is substantially the same as that 

given by Zeuthen, Mathematische Annalen, 111. 150 ; but Iam informed by Dr. Fiedler 

that it had been previously given by Bertini, Battaglini Giornale, v11. 105 (1869). 

See also a direct proof in Clebsch and Gordan’s Theorie der Abelschen Functionen, 

p. 54, for the case where the curves in one system answering to right lines in the 

other have common no multiple points higher than the seconds 
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degree m-+m’—2, the points A, A’ being multiple points of 
the orders respectively m’— 1, m—1. 

Let us next consider in what cases AM touches the locus. 

This will be the case when two of the lines A’M’ corresponding 
to AM coincide, without our having at the same time a coin- 

cidence between two of the lines AM corresponding to A’M’; 

for in the latter case the intersection of AM, A’M’ would be 
a double point on the locus, and AJM would not be an ordinary 
tangent. Now (1) if AM touch the curve S, AM will evidently 

also touch the locus. (2) If AM pass through a double point 
on S, then according as to that double point there corresponds 

on S’ a double point or a pair of distinct points, we have 
corresponding on the locus a double point or a pair of distinct 

points, but in neither case is AJ an ordinary tangent. (3) If 
AM pass through a cusp on S, then according as to that cusp cor- 

responds a cusp on S’, or a pair of coincident points, AJ passes 

through a cusp on the locus, or else is an ordinary tangent. 
It appears from (1) and (3) that the number of ordinary 

tangents from A, together with the number of cusps, is the 

same for the locus and for the curve S. It is by expressing 

this equality that we obtain the relation connecting the two 

curves S, S’. It was shewn (Art. 79) that the number of 
tangents which can be drawn to a curve of the m degree from 
a multiple point of-the order r is m*—m-—r(r+1); or is 

less than the class of the curve by 27. Hence, if N be the 
class of the locus curve, the number of tangents which can 

be drawn from A, which is a multiple point of order m’—1, 18 
N-2(m’—1); and if we denote the number of cusps on the 

locus curve by A, and the class of S by n, the equality we 

desire to express is 

N-2(m’ -1)+ K=n-24+k. 

In like manner, considering the tangents from A’, 

N-2(m—1)+ K=n'-24+k, 

and we have therefore n—2m+K=n' —2m’'+, 

or, writing for n its value m*® — m— 26 — 3k, 

4 (m—1)(m—2)—8—K =} (m' —1)(m’-2)-O- xk. QE.D.* 

* Zeuthen proves in like manner, that if, instead of the correspondence of the 

curves being rational, a points on S correspond to any point on §’, and a’ points on 



328 TRANSFORMATION OF A GIVEN CURVE. 

365. It is proved, as in Art. 361, that if we transform a curve 
S of the m* order by the transformation aw : y’: 2°=U:V: W, 

where U, V, W are functions of the p™ order, then since the 
points where an arbitrary line meets the transformed curve 

correspond to the points where aU+8V+yW meets S, the 

order of the transformed curve is mp — a, — 2a,, &c., where a,, 

a,, &c. denote the number of single, double, &c. points common 

to U, V, W, and which also lie on S. Let us now examine 
rhow, by this transformation, we can reduce the order of the 

transformed curve as low as possible. As in Art. 353, we 

see that U, V, W may be made to satisfy two conditions less 
than the number sufficient to determine a curve of the p™ 

order, that is to say, $p(p+3)—2; and we evidently apply 

these conditions so as most to reduce the order of the transformed 

curve, if we make U, V, W pass through as many as possible 

of the double points of §. Let the deficiency of S be D, and 
the number of its double points accordingly 4 (m’— 3m)- D+1; 

and let us in the first place take p=m—1, in which case 

we may make U, V, W pass through $(m*+m)—3 points. 

We may, therefore, make the curves pass through all the 

double points and through 2m+D—4 other points on S. 
Writing, therefore, a,=2m+D-—4, a,=4(m" —- 3m)—-D+1, 

p=m-—1, we find for the order of S$’, mp— a, -—2a,=D+ 2. 

Let us next take p=m-—2, which of course implies that m 

is greater than 2. Proceeding precisely as before, we see that 

we may take a,=4(m’- 3m)—-D+1, a,=m+D-—4, and that 

the order of the transformed curve will still be D+2. Once 

more let us take p= m— 3, we may take a, =4(m*—3m)—D +1, 

a,=D-—43%, provided always that D is greater than 2; and 

we now find for the order of the transformed curve D+ 1. 
The transformed curve has, as we have proved, the same 

deficiency as the original, so that our result is, that a curve 

of order m with deficiency D, or with 4 (m—3m)-D+1 double 

points, may be transformed into a curve of order D+2 with de- 
ficiency D, that is, with 4 (D’—D) double points; or, when D is 

S’ to any point on S; and if ¢ and ¢’ denote the number of cases in which two of 

these a or a’ points coincide, then 

t —t’= 2a’ (D—1) — 2a (D’ — 1). 

‘3 
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greater than two, into a curve of order D+1 with 4 (D*- 3D) 
double points. 

Thus then, in particular, a curve may be transformed as 
follows: 

if D =0 into a conic,* 
i a 5» 2 cubic, 

»» quartic with one node, 

») + & quartic, 

»» 2 quintic with two nodes, &ce., 

», a sextic with five nodes, 

7 with 9, 

8 with 14 or 6 with 3. 

27 

Mot tt Bate ee tee 
y 

366. The case of unicursal curves need not detain us. 
Here D=0, and the transformed curve a conic; the coordinates 

x’, y’, # are, as we know, expressible as quadric functions of 

a parameter 0; therefore the coordinates x, y, z, which are 

expressible as rational functions of x’, y’, 2’, can be expressed as 
rational functions of @. 

Let us then consider the case D=1. Here the transformed 
curve is a cubic, and it is to be noted that, however the trans- 
formation is effected, the resulting cubic will have always the 

same absolute invariant; that is to say, the anharmonic ratio 
of the four tangents from any point on the curve will be the 

same (Art. 229). When D=1, the coordinates of any point 
on the curve can be expressed as rational functions of a para- 

meter 0, and of /(©) where © is a quartic function of @. It 
is sufficient to shew this for the case of a cubic, since a, y, 2 

can be expressed as rational functions of 2’, y’, 2’; and for 
the case of the cubic, it appears at once by taking the cubic 
to pass through the point wy, and then writing in the equation 

* Although by the method just described the case D = 0 is only transformed into 

a conic, yet by the Cremona transformation the conic can be further transformed 

into a right line. 
For some further developments see Jung and Armenante in Battaglini’s Giornale 

vil, 235; and Brill and Noether, Math, Annal., vu. 298, 

UU 



330 TRANSFORMATION OF A GIVEN CURVE. 

of the curve y=0@x, when the ratios w: y: 2 are immediately 

obtained in the form in question. It is, moreover, clear that 
the values of 6 for which © =0 are precisely those answering 
to the four tangents from xy to the cubic. 

We have thus seen that the coordinates of a point on the curve 
for which D=1 can be expressed as rational functions of 0 and 

/(@); and by a linear transformation of @ (that is to say, re- 

placing @ by a properly determined function a6 +b+c0@+d) we 

can bring /(©) to the form 4/(1— 6°) (1—4°6"). If we write 

0=sinamw, this is cosamz Aamu, and we may say that the 

coordinates of a curve, whose deficiency is 1, can be expressed 

as elliptic functions of a parameter w. 

867. There is a like theory where the deficiency is 2, and 

where the curve is therefore reducible to a nodal quartic. 

Taking the node of the quartic for the point ay and writing 

y=Ox, we can immediately express the ratios e:y:z2 as 

rational functions of @ and ./(©), where © is now a sextic 
function of @; and this is equivalent to saying that the coor- 

dinates are expressible as hyper-elliptic functions of the first 

kind of a parameter wu. Jor higher values of D the coordinates 

are irrational functions of a parameter, and it is only .in special 

cases that they can be expressed by radicals. 7 

368. Before quitting this part of the subject, another method 

may be mentioned by which the same problem may be studied. 

We may start with the equations connecting the coordinates 

xyz, «yz; let these be A=0, B=0, C=0, each equation 
being homogeneous both in ayz and 2’y’z’5 and being in 

those variables of the orders a, b,c; a’, b’, ¢ respectively. If 

between the three equations we eliminate a’y’z’, we obtain an 
equation S=0 of the order ab’c’ + be'a’+ca’b’ in wyz, and if 
we eliminate xyz, we obtain an equation S’=0 of the order 
abe+Uca+cab in xyz’. The conditions S=0, S’=0 must 

be satisfied in order that the equations d=0, B=0, C=0 may 

co-exist; but for any system of values of xyz satisfying the 
equation S=0, we can find a corresponding system of values 
of a2’y'z satisfying equations d= 0, B=0, C=0, and therefore 

also S’=0. The number of double points on the curve S may 

al 
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be investigated by the methods explained in Higher Algebra, 

Lesson XVIII., and the result I have obtained is 

$0’c (b'c’ —1) a’ + dca’ (ca — 1) 0? + 4a'l’ (d’-1) 

+ {(a’b’ — 1) (c’'a’ — 1) — 43 (a’ — 1) (a —2)} be 

+ {(W’c’ — 1) (a - 1) — 3 (b’ —1) (WV -2)} ca 

+ {(ca”— 1) (Ue — 1) -4 (¢ -1) (¢ —2)} ad, 
and there is of course a similar expression with interchange of 
accented and unaccented letters for the number of double points 

on S’. In either case we find the deficiency to be 4(Q+2), 
where 

Q=a'l'd + Ba + Cad + abc 4+ beat cab 

+ 2aa’ (be’ + b’c) + 2b0’ (ca’ + ca) + 2cc’ (ab’ + a’b) 

— 3 (ab’c + bea’ + ca'l’ + abe + b’ca+ cab) s 

so that again we have the theorem that the two curves have 

the same deficiency. 

CORRESPONDENCE OF POINTS ON A GIVEN CURVE. 

369. What has been said may sufficiently illustrate the 
theory of rational correspondence; in what follows we consider 
the general correspondence of two points P, P’ on the same 

curve, such that either determines the other. Suppose that to 

a given position of P there correspond a’ positions of P’, and 

to a given position of P’ya positions of P, the correspondence 
is said to be an (a, a’) correspondence. When a=a'=1, 
the correspondence is rational. 

As a simple instance of correspondence on a given curve 

of the m™ order, suppose the points P, P’ to be collinear with 
a fixed point O (that is to say, that the line PP’ passes through 

QO), then if P be given there are m—1 positions of P’, and 
if P’ be given there are m—1 positions of P; or this is an 
(m—1, m—1) correspondence. We have already noticed this 

particular kind of correspondence in the case of the circle (see 
Art. 347). This correspondence is evidently rational in the 
case of the conic, or where m= 2. 

If the point O is on the given curve, then to a given 

position of either point there correspond m-— 2 positions of the 
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other point; or more generally, if O is an a-ple point of 
the curve, then to a given position of either point there corre- 

spond m—a—1 positions of the other point, viz. the corre- 

spondence is a (m—a—1, m—a—1) correspondence. Observe 
that we have in this way a (1, 1) correspondence of points 

on a cubic (by taking O at pleasure on the curve), or on a 

nodal quartic (by taking O at the node), but that we cannot 
thus obtain a (1, 1) correspondence of points on a general 
quartic. 

370. In the foregoing instance the correspondence has been 
a symmetrical one; viz. starting from either point the other 

is obtained by the same construction, and of course a=a’. 

But as an instance of a non-symmetric correspondence, suppose 

that P’ is given as a tangential of P; here P being given, P” 

is any one of the intersections of the tangent at P with the 

curve (and thus to a given position of P there correspond m-— 2 
positions of P’); but P’ being given, P is any one of the points 

of contact of the tangents from P’ to the curve (and thus to 

a given position of P’ there correspond n—2 positions of P, if n 
be the class of the curve); and we have thus a (n—2, m— 2) 

correspondence. It is hardly necessary to remark, that we 

may have a=a without the correspondence being symmetrical. 

371. In the case of a unicursal curve, to a given point on 

the curve corresponds a single value of the parameter @; and 

to a given value of @, a single point @n the curve (or extending 

the notion of correspondence we might say that a point on the 

curve and the parameter of such point have a (1, 1) corre- 
spondence). It at once follows that if the point P has @ positions, 

its parameter 9 must be given by an equation of the order a; 

whence also, if as above, the points P, P’ have an (a, a’) corre- 

spondence, the relation between their parameters @, &” must be 
given by an equation of the form (0, 1)«(@’, 1)#’=0, viz. @ being 

given the equation will be of the order @’ in 6’, but @& being 
given it will be of the order a@ in @. 

372. A point may correspond to itself, and it is then said 

to be a united point; thus where the points P, P’ are collinear 

with a fixed point O, it is clear that the point of contact of any 
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tangent from O to the curve is a united point; and if these are 
the only united points, their number is =n. 

The only other points which it might at first sik appear can 

be united points are the nodes and cusps of the curve; in fact, 

taking P at a node or a cusp the line OP meets the curve in the 
point P, in the same point counting as one of the (m-— 1) inter- 
sections, and in (m’— 2) other points; or, what is the same thing, 

the line from O to the node or cusp meets the curve in the node 

or cusp counting twice, and in (m-— 2) other points. But in the 

case of the node, the two intersections at the node belong to 
different branches of the curve, or we may say they are coinci- 

dent, but non-consecutive points; in the case of the cusp they 
are consecutive points: the distinction is well seen in the case of 

a unicursal curve—here for a node we have two distinct values of 

9, for each of which the coordinates have the same values; for 

the cusp these two values of @ have become identical; or, what 

is the same thing, the line from O to a cusp (although not a 
proper tangent of the curve) is a tangent in a sense in which 

the line from O to a node is noé a tangent to the curve. The 
conclusion is, that a node is not a united point; in a special 
sense a cusp is a united point; and we have, besides, the proper 

united points, which are the points of contact from O to the 

curve. 
Reverting to the unicursal curve and to the equation 

(0, 1)*(@', 1)" =0, at a united point we have 9=@’, and for 
finding these points we have an equation (@, 1)¢+¢’=03; that is, 

when the points P, P’ have an (a, a’) correspondence, the number 

of united points is =a+a’, 
Applying the theorem to the case where P, P’ are collinear 

with the fixed point O, the correspondence is (m—1, m—1), or the 

number of united points should be =2 (m—1). The number of 
points of contact, or proper united points is =n, that of the 
cusps or special united points is =«; or we ought to have 

n+K=2(m-—1), 

which is in fact the case for a unicursal curve with « cusps. 

In the case where P” is a tangential of P, it has been seen 
that the correspondence was (n—2, m— 2); and the number of 

united points should be =m+n-—4. We have here as proper 
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united points the inflexions, and as special united points 
the cusps; total number =c+«; and the theorem thus is 
t+xK=m+n—A4, or what is the same thing 1=3 (m—2)—2«3 

which is in fact the case for a unicursal curve with « cusps. 

373. Consider the point P as given; the geometrical con- 
struction for the determination of P’ comes in general to this, 

that we have depending on P a certain curve © which, by its 

intersections with the given curve, determines the points P”. 

In some cases P’ is any one of the intersections in question; 

but in others a certain number of them will in general coincide 
with the given point P, and are to be excluded. Thus, in the 

case where P, P’ are collinear with O, the curve © is the line 

OP meeting the given curve in the point P counting once (to 

be excluded) and in (m—1) other points. So when P’ is the 
tangential of P, the curve © is the tangent at P meeting the 
given curve in the point P, counting twice (to be excluded) and 

in {m— 2) other points. 

But further; the curve © may meet the given curve in 

points forming two or more distinct classes, in such wise that 

only the points of the one class are positions of the point 

P’, Thus, in the last preceding instance, interchanging the 
points P, P’, or now considering P’ as the point of contact of 
a tangent from P to the curve, the curve © is the system of 

n—2 tangents from P to the curve; each of these tangents 
meets the curve in the point P counting once, in the point of 

contact say P’ counting twice, and in m—3 other points say 

P” (which are cotangentials of P, that is PP” touches the curve 

at a point P’ distinct from P or P”). Or, what is the same 
thing, the curve © of the order n—2 cuts the given curve in 

the point P counting n—2 times, in 2-2 points P’ counting 
each twice, and in (x — 2) (m—3) points P” counting each once. 
The correspondence P, P’, as was seen, is (m—2, n—2); the 

correspondence (P, P”) is clearly (n—2 m—3,n- 2 m-—3). 

374, The theorem in regard to a unicursal curve suggests 
the theorem that for a curve in general the number of united 
points should be =a+a’+ multiple of the deficiency, or say 
=ata+k.2D; but admitting that the curve © presents itself 
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in the problem, the last instance shews that there is a necessity 
for considering the case where the curve © has with the given 
curve distinct classes of intersection. The general theorem 

is, that if for a given curve of deficiency D, the corresponding 
points of Pare P’, P”, ..., and if P, P’ have an (a, a’) corre- 

spondence, and the number of the united points is =a: P, P” 

a (8, 8’) correspondence, and the number of their united points 

is b : &c.5 and if the curve ©, which, by its intersections with 

the given curve, determines the points P’, P”, ..., intersects the 

given curve in the point P counting & times; in each of the 
points /’ counting p times, each of the points P” counting 
q times, and so on, then we have 

p(a—a—a)+q(b—B-P’)+...=k.2D, 

where of course in each of the different correspondences the 
special united points (if any) must be taken into account. 

Thus, in the instances above considered for a unicursal 
curve; first, if P, P’ are collinear with O, we have 

M+ = 2 (m—1) + 2D... .ccccccsccese (1). 

Next, if P’ is a tangential of P, 

bbK=M+EN—A+LAD 00... cccccceeceeee (2); 

and in the case where P is a tangential of P’, and where 
b, 8, B’ refer to the correspondence P, P” cotangentials, 

b —2 (m—3) (n—2)+2(a—a-—a’)=(n—2) 2D, 

where, by the example immediately preceding, 

a—a—a =t+K—(m+n—4)=4D, 

and therefore b—2(m-—3) (n—2)=(n—6) 2D. 
The proper united points b are here the points of contact of 
the double tangents, the number of which is 27; but we have 
also as special united points the cusps each counted z— 3 times 
(ct must be assumed that this ts so), and the result 1s 

27 = 2 (m —3) (n— 2) + (n—- 6) 2D—(n—3) x .... (8). 

The several equations (1), (2), (3) giving respectively the 
class, the number of inflexions and the number of bitangents 

of a curve of the order m with 6 nodes and « cusps agree with 
the Pliickerian equations; they are most easily verified by 

means of the expressions given, Art. 83, for the several quan- 
tities in terms of m, n, and a= 3n+ K. 
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375. If on any.curve the points P, P’ have a (1, 1) cor- 
respondence, the points (P’, P”) a (1, 1) correspondence...and 

so on up to the points P™, P; then it is clear that the 

points P, P have a (1,1) correspondence. And, conversely, 

the points P, P“’ which have a (1, 1) correspondence may be 

regarded as connected with each other through the series of 

intermediate points P’, P’”...P°™. . 
In the case of a unicursal curve, the (1, 1) correspondence 

of the points P, P’ implies a like correspondence of the para- 

meters 0, 0; viz. this is of the form (@, 1) (@, 1)=0, or what 
is the same thing, a06’+00+c6’+d=0; that is, the para- 
meters 6, & are homographically connected. The transfor- 
mation depends upon three arbitrary parameters. 

Taking the curve to be a conic, then if the points P, P’ 

have a (1, 1) correspondence, it is known that the line PP’ 

envelopes a conic having double contact with the given conic; 

such enveloped conic, as satisfying the condition of double 

contact, depends on three parameters. But if taking the points 
A, B at pleasure, we take on the conic P, Q collinear with 

A, and P’ collinear with B, Q, then the points P, P’ will have 

a (1, 1) correspondence; this apparently depends upon four 

parameters, and it follows that the points A, B can without 

loss of generality be subjected to Spy oi 

a single condition. Thus let the Au bac 
correspondence P, P’ be given by ; Pe 

means of the conic enveloped by 

the line PP’; if on the chord of 

contact we take at pleasure the point 
A, draw PA to meet the conic in @ 

Q and QP’ to meet the chord in B, then (1, 1) correspondence 
is also given by means of the points A, B; but here A may 

be regarded as a determinate point on the chord of contact 
(say its intersection with a fixed line), B is then found as 

above, and we have the correspondence by means of these two 

points, just as well as if A had been assumed at pleasure on 
the chord of contact. 

A case really included in the foregoing is when the corre- 
spondence of P, P’ is such that the line PP’ passes through a 
fixed point C’; viz. the enveloped conic regarded as a line-curve 
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is here the point C taken twice, regarded as a point-curve 
it is the pair.of tangents from C to the given conic; that 

is, the chord of contact is the polar of C, and the construc- 
tion is the same as before, the points A, B, C forming, as 
it is easy to see, a set of 
conjugate points in regard 

to the conic; the original 

correspondence of P, P’ as 

collinear with the given 
point C, is here replaced by 
a correspondence by means 
of the two points A and B - 
forming with C a system of 
conjugate points. 

The foregoing properties have reference to the problem of 
the inscription in a conic of a polygon the sides of which either 

pass through given points or touch conics having each of them 

double contact with the given conic. 

ff’ 

376. On a cubic curve (D=1) we have a (1, 1) corre- 
spondence; this depends on a single parameter, but there are 
two kinds of such correspondence, viz. (1) the points P, P’ are 

collinear with a point A of the cubic. (2) The points P, P’ 
are such that P, Q are collinear with 
a point A of the cubic and Q, P ¢ # z 
collinear with a point B of the cubic; 
this apparently depends on two para- , ‘3 - 
meters, but really on a single one; "| . "i 
for taking C a determinate point on 
the cubic, join AC to meet the cubic 
in O and BO to meet the cubic in 

D; then the same corresponding point P’ will be obtained by 
taking P, £ collinear with D, and &P’ collinear with C, that 
is, by means of the single point D. It is, in fact, evident that 

starting with P and constructing P’ as the intersection of the 
lines QB, RC, then the cubic passing through A, B, C, D, 

O, P, Q, R will also pass through P’, so that the points A, B 
and the points D, C lead to the same point P’. 

The theorem involved in the foregoing construction may be 
xx 
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stated as follows: If on a cubic the points A, B, C, D are such 
that the lines AC, BD meet in a point O of the cubic, then we 
have inscribed in the cubic an infinity of quadrilaterals POP’ R, 

the sides of which pass through A, Bb, C, D respectively; viz. 

any point P whatever of the cubic may be taken as a vertex of 
such quadrilateral. 

377. More generally imagine inscribed in the cubic an 
unclosed polygon PQ...X of 2n—1 sides, the sides of which 

pass through fixed points on the cubic, then the points P, X will 
have a (1, 1) correspondence of the first kind, that is, the closing 

side XP will meet the cubic in a fixed point; that is, we have 
inscribed in the cubic an infinity of 2n-gons, the sides of which 
pass respectively through fixed points of the cubic. And of the 
fixed points all but one are arbitrary, this one being determined 
by constructing one such polygon. 

378. This theory may be illustrated by the expression of 
two points in a cubic by means of parameters, Art. 366. A (1, 1) 

correspondence between two points on a cubic implies a rational 
expression for the parameters sinamw’, cosamu’, Aamw’, in 
terms of sinamw, cosamu, Aamu; and this again implies an 

equation of one or other of the forms u+w’ = constant, 
u—u =constant. Now when three points P, P’, A, are col- 

linear, we have in general a relation w+u’+a=A where A is 

a constant depending on the absolute invariant of the cubic. 
A relation, then, of the form u+«’=constant, implies that P 
and FP” are collinear with a fixed point A. If the relation 

be of the form w—wu’=constant, say =b—a, we may write 
utvt+a=A, v+b+w =A; and the geometrical meaning is, 

that P, Q are collinear with a fixed point A and Q, P’ with 
a fixed point B. We may evidently substitute for the points 

A, B, two others D, C, provided we have 6—a=c—d, or 
a+c=b+4d, that is to say, provided the lines AC, BD in- 
tersect on the cubic. We have thus the results already 

obtained. 

879. For a binodal quartic (D=1) there isa like theory of 
the (1, 1) correspondence; for a nodal quartic (D=2) there is a 
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(1, 1) correspondence not depending on any arbitrary parameter, 

viz. the corresponding points P, P’ are collinear with the node. 
There is an interesting theory of the (2, 2) correspondence 

on a unicursal curve, and in particular on a conic. ‘The para- 

meters which determine the position of the two points P, P’ are 
here connected by an equation (0, 1)*(@,1)?=0. As regards 
the conic we have Poncelet’s theorems as to the in-and-cir- 
cumscribed polygons. 
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CHAPIER. 1X, 

GENERAL THEORY OF CURVES. 

380. In this Chapter we resume the general theory of curves 
in continuation of Chap. II., and commence with the theory of 

bitangents of a curve of the x" order postponed from Art. 78. 
We shall explain two methods by which we can form the 

equation of a curve whose intersections with a given curve shall 

determine the points of contact of its bitangents. 
The theory of the tangents of a curve was studied (Art. 64) 

by means of the equation A =0, or 

MU’ +A" UAU’ + dn" WAU’ + &e. = 0, 
which determines the coordinates of the points in which the 

line joining two given points meets the curve. We there saw 

that if the point a’y’z’ be on the curve, and xyz anywhere on 

the tangent, we must have U’=0, AU’=0, and if the tan- 
gent meet in three consecutive points we must have besides 

A’U’=0, if in four consecutive points we must have likewise 

A’U’=0, and so on. If the tangent at a’y’z’ touch the curve 
elsewhere, then making U’=0, AU’ =0, in the equation A=0, 

the reduced equation of the (n—2)" degree must have equal 

roots, and therefore, if the discriminant of that equation be Y, 
the relation Y=0 must be satisfied by the coordinates a’y’e’, 

xyz. In the case of points of inflexion where we have the two 
conditions AU’ =0, A?U’ =0, the one being of the first degree 
and the other of the second in xyz, and both satisfied for any 
point on the tangent, it is evident, as was stated (Art. 74), 

that AU’ =0 is the equation of the tangent, and that A*U’=0 
must contain AU’ =0 as a factor. In like manner, in the case 
of a bitangent, Y=0 must contain AU’=0 as a factor, and 
by finding the condition that this shall be the case, we find the 
condition that «’y’z’ shall be a point of contact of a bitangent. 
The special method used, Art. 74, not being applicable to 
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the general case, we employ the following method due to 
Prof. Cayley, and it is convenient to begin with the follow- 
ing lemma. : 

381. Let the equations of two curves contain the variables 
xyz in the degrees a, b respectively, and 2x‘y’z’ in the degrees 

a’, b’; and let the ab points of intersection of the two curves 

all coincide with 2’y’z’, it is required to find the order of the 
further condition that must be fulfilled in order that they may 
have other common points, which can only happen when there 
is a factor common to U and V. When this is the case any 

arbitrary line ax+fy+yz=0 must be sure to have a point 

common to U and V; namely, the point or points where the 

arbitrary line meets the curve represented by the common 

factor. It follows that the result of elimination between U=0, 
V=0, and the equation of the arbitrary line must, in this case, 

vanish. This result contains aSy in the degree ab, a’y’z’ in 

the degree ab’+a’b, and the coefficients of U, V in the de- 
grees b, a respectively. But since the result of elimination 

is obtained by multiplying together the results of substituting 

in ax+ By +z the coordinates of each of the intersections of 
U, V, and since by hypothesis these interesections all coincide 
with xyz’, the resultant must be of the form II (ax’+ By’ +y2’)”. 
The condition ax’ + By’ +2’ =0 merely indicates that the arbi- 

trary line passes through a’y’z’, in which case it passes through 
@ point common to U and V, whether they have a common 

factor or not. Rejecting this factor, the remaining condition 
11=0 is the sought condition that U and V may have a 
common factor, and we see that it does not involve a@y, that 

it is of the order ab’ + a’b—ab in xyz’, and of the orders 4, a 
respectively in the coefficients of U and V. 

382. When the method just described is applied to the inves- 
tigation of the points of inflexion, that is, to the determination 
of the condition that AU’, A*°U’ may have a common factor, 

we have a=1, a =n—1, b6=2, b’ =n—2, and the formula just 
obtained gives 3 (n — 2) for the order of [1 in 2’y’z’, which is the 
order of the Hessian as already found. It appears also that IT 

is of the second degree in the coefficients of AU’, and of the 
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first in those of A’U’; and since each of these is of the first 
degree in the coefficients. of the original equation, [I involves 
these coefficients in the third degree, which also agrees with 
previous results. 

To proceed then to the case of the double tangents, since the 
equation A =0 is reduced to the form $A*U’A"* +...4 Un"? =0, 
a specimen term of its discriminant is (A*U’)"*U"*, whence we 

see that Y is of the order (n+2)(n—3) in xyz, of the order 

(n —2)(n—8) in a’y’z’, and of the order 2 (n—38) in the coeffi- 
cients of the original equation. In the next place we can 

show that all the intersections of Y and AU’ coincide with 

x’y'2’; for the equation of the system of n*—n—2 tangents 
through the point 2’y’z’ found by the method of Art. 78 is of 
the form 4AU’+ Y(A*U’)’=0, and this system can evidently 

be intersected by AU’ in no other point than 2’y’z’; therefore 
making AU’=0 in the equation last written, we see that 
AU’ can meet neither Y nor A’U’ in any other point than 
ax’y’z’, We may then apply the method of Art. 381, writing 
a=1, a =n—-1, b=(n+2)(n—3), b =(n—2) (n—3), whence 

ab’ + a’b =(n? + 2n—4)(n—3). We have then for the order of 
I] in xyz’, (n+3) (n—2) (n—3). It is of the order (n+ 2) (n—3) 
in the coefficients of AU’, and of the first order in the coeffi- 

cients of Y, and therefore of the order (n+ 4)(n—3) in the 

coefficients of the original equation. The bitangential curve 

II=0 meets the original curve U=0 in n(n +38) (n—2) (n— 8) 
points, and since there are two of those points on each bitangent, 

the number of bitangents is 4n(n—2)(n*—9) as found other- 

wise, Art. 82. 

383. The method of Art. 381 not only enables us to de- 
termine the order of the required condition [[=0, but by the 
actual performance of the operations indicated, to find the con- 

dition itself. Thus 2’, y’, 2’ being, as before, the coordinates of 
the point on the curve, in the case of points of inflexion we 

have to eliminate between az + By +yz=0, AU’=0, A’U’=0, 

and the last equations written at length are 

Lae+ My + Nz=0, 

ax + by’ + cze* + 2fyz + 2gzx + 2hay =0. 
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It will be convenient, in order to avoid numerical multipliers, if 
we suppose the original equation to have been written with 

binomial coefficients, and the common multipliers to be removed - 
after differentiation, so that Z, M, N denote the first differentials 

of U’ divided by x; a, 5, &c., the second differentials of U’ 
divided by n(n—1); and the ordinary equations. of homo- 
geneous functions will be La’+ My'+ Nz’=U’, ax’+ hy'+ gz'=L, 
&e. | . 

Now the condition that two lines shall intersect in a point 
on a conic may be written in the form of a determinant 

a, h, g, L,a@ 

h, b, f, UM, 8B 
n tI & NY 

L, M, N, 
| a, B, %; =0, 

for it may be verified, that this determinant expanded is the 

same as the result of substituting in the equation of the conic, the 

coordinates of the intersection of the two lines, viz. My— NB, 

Na— Ly, LB —Ma. Now, in virtue of the equations of homo- 

geneous functions, the above determinant may be reduced by 
multiplying successively the first three limes and columns re- 
spectively by 2’, y’, z’, and subtracting from the fourth. It 

then becomes, if we denote ax’ + By’ + yz’ by R, 

a,h,g, 9, ao 

h, by f, 9, B 

J) fi % 9%; ¥ 

6,-0.0, <7 U’, —k 

a, B, 7, —#, 0 ’ 

a, h, g, 4 a, hy 9 

or — U’ hb, fi P — fh} h, 5, f 
Bo Sy & 9, fre 

a, By ¥ 

After Clebsch we use the abbreviation ie for the determinant 

multiplying U’, in which the matrix of the Hessian is bordered 

vertically and horizontally by a, 8, y. In like manner the de- 
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terminant with which we started, in which the same matrix is 

twice bordered, by a, 8, y, and by the differential coefficients of 

'U, would be written age and the equation we have 

established is . 

(9 )=-o'()- 
U, | 

When a’y’2’ make U’=0, the equation pe .) = 0 reducesto 
? 

H=0, as it ought. 

384. In order to proceed by the same method to find the 

equation of the bitangential curve, we have to find the result of 
substituting My—N8, Na- Ly, LB—Ma for x, y, z respectively 

in the discriminant of the equation A=0 (Art. 380), and our 
course will be first to find the result of that substitution in the 

several coefficients of that equation, viz. A*U’, A’U’, &c., or as 

we shall more briefly write them A’, A®*, &c. The result of sub- 
stitution in A’ has been calculated, (Art. 383), and Hesse has 
shewn by the following process, that the result of substitution 
in A* is of the form P,U’+ Q, (ax’ + By’ +2’), which when 
x'y’z’ is on the curve reduces to Q,(aa’+By’+y2’)*, His 

method shews that if this be true for two consecutive A*”, A‘, 

it will be true for A’, and enables us to express P,,,, Q,,, in 

terms of the corresponding previous coefficients. It will be 
remembered, that by definition we have A**=A(A*), where 

d d d Me ae 
A denotes the operation x ait ¥ iy +2555 but in this it was 

assumed that wyz, 2’y/z’ are independent quantities. In the 

case now under consideration, where x is supposed to have 
the value My —N~, and therefore to be implicitly a function 

of xyz’, it must therefore be understood, that in the operation 

A the differentiation only affects x’y’z’ as far as they appear 
explicitly, and not as they are implicitly contained in ayz. 

d 
Si without 

this restriction, then according to the gener Hy rule for deriving 
differentials with regard to «‘y’z’ on the supposition that xyz 

are variable from the differentials on the supposition that they 

d 
Let us denote by v the operation x pO hes +) +2 
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are constant, we have in operating on any function S, 
Y ds dS ds 

ME ADH op Veta vere ve 

_ 885. The next step is to calculate the values of VL, VY, Ve 

The result of operating with y on any function § is easily 

Si S. 8, 3 

LL, M, N 

shat a, B, 

xz or My — NB the sce is 

| hy — 9B, by 18, f Fy - 0B 
L, M, N 

) | a) B, y ’ 

where the coefficient (n—1) arises from the condition we have 
introduced, according to which the differentials of Z, &c. are 

(x—1)a, &c. The determinant just written is then reduced by 
the following process: 

seen to be , and therefore when the function is 

(n — 1) 

1, J) ds C % I, Sy © 

0, hy-gB, by-JB, fy-c8 | _ |B, 4, 6, Sf 
0, L, M, N oe) Oy Day Hh, 2ae 

0, a, B, Y 0,4, 8, ¥ 

Y, Ci otey Aga: Ri — ax’, — ax’, — hx’, — gz’ 

oe B, Ry Ose y B, h, b, - 

— (By' + yz), ax’, he’, ga’ apathy I; Jj ¢ 

0, a, By ¥ 0, ay B, Y 

h, b, f ‘ 

=hi gf, ¢\+2 ( ). 
a 

a, B, ¥ 

If we denote (*) by =, and the halves of its several differ- 
ie 8 : 

entials with regard to a, 8, y, by %,, 2, %,, these last differ 
only in sign from the determinants multiplying / in the values 
of Vx, Vy, V2, and we have 

eee ae eae 

s-0(0) Bede) 
be 
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In particular let S=A*(V), where V is any function of the 

order n’ in 2’y’z’, then since oS =k ve A**(V), we have 

v (A'V) =a") —& (n-1) B ( 5 2%, at x5 ~) a** (V) 

+k(n-1) (% ) (« att ate =) OY, 

Since A*’V is a homogeneous function in 2’y’z’ of the degree 
n’ —k+1, the last term reduces to 

k(n— 1) (n’—k+1) C) At (). 

386. It will be convenient to use the abbreviation y for 
d 

the operation &, sae ay? > kl and it will be observed 
3 dz 

also that 

a, h, J; V, 

te fe ¥. V V ae ? 7/7) 2 or = B HIM =| Oe (,) 
a, By ¥ 

The result of operating with y on @ vanishes, as may easily be 
seen by substituting in the last column of this determinant for 

Vi, Vi, V,, 0 the values hy — 98, by —f8, fy — cB, By — 8, when 
it at once resolves itself into two, each of which vanishes in con- 

sequence of having two columns the same. The result then, of 
operating, with yr on any function containing az, y, z, is the 

same, whether or not these be regarded as constants. The 

equation of the last article then, as applied to the quantities 
A*, &c. which we desire to calculate, is 

At = 9 (A) +4 (n-1) Ry (A™)- k(n- 1) (n—h +1) BA. 

387. From the expression just found, we can shew that if 
we have A** =P, ,U+ Q, 9, A*°=P,U0+ Q,R’, then A™ must 
be of like form. For we have only to substitute these values 
for A**, A* in the equation of the last article; and we must 
observe that y(U) and y (#) both vanish, as at once appears 
by substituting either Z, M, N, or a, B, y for S, S,, S, in 
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Hence vy (A4‘)=Uy(P,)+F’v(Q,). We 

S,, &,; 8 

Ly M,N 

» By ¥ 
ae by ny es nL, nM, nN, and a, B, ¥ respectively 

for 8, 8, 8, in (° ); (UT) = nH1R, ¥ (R)=(%) , and therefore 

ap At! = Ub (P,,) + Rr (Q,,) —nP,_,HR+2R3Q, 

Collecting then the terms in the expression given for A‘ 
(Art. 386), we have A”’*= UP,,, + R’Q,,,, where 

Py.=V (BP) —k(n- 1) (n—h+ 1) BP, , +2 (n= 1) RY(P,,); 
Ques = 0 (Q,) —k (n= 1) (n-k-1) 3Q,, 

+k (n—1) By (Q,,) - n(n—1) RP, HL 

388. From these formule we are able to form a table of the 
values of P,, Q,, &c. Thus to commence, it is obvious that 
P.=0, Q,=0, and (Art. 383) PR=-—, Q,=-—H. Hence 

P,=-A(2), Q,=-4 (H). 
When the curve is a cubic A’ is no other than the cubic func- 

tion itself, and the value just given for @, may be geometrically 
interpreted as follows: If any line aw+ y+ yz meet a cubic, 
and from each of the points of meeting four tangents be drawn 
to the curve, the twelve points of contact lie on the quartic 

a (H,N-H,M) +8 (HL — H.N)+y(H,M— HL) =0; 
for this condition must, as we have seen, be fulfilled by any 
point of the curve whose tangent intersects az + By+yz on 

the curve. This result also immediately follows from Art. 183. 
Proceeding now to Q,, we have (Art. 387) 

Q,=—-V (4H)+4+3 (n—1) (n—4) 2H-3 (n—-1) Ry (H)4+3n(n-1)2H 

=— V (AH) +6 (n—1) (n—2) SH—3 (n—1) Ry (HZ). 

But in conformity with the result at the end of Art. 385, writing 
k&=1, and denoting by n’ the degree of the Hessian, or 3 (n — 2), 

v (AH) =A’°H—(n—1) Ry (HZ) + (n—- 1) nD. 

Hence Q,=- A°H+(n-—1) nSH—-2(n—-1) Ry (A). 
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389. We have now the materials for forming the equation 
of the bitangential curve of a quartic. According to the 
method explained ae 384) we are first to form the discrimi- 

nant of A=0, or of 5 A+ oe AMM + 3G A*y’; and 

then having seciien My — NB, &c. for x, &c. we must, by 
the help of the equation of the curve, remove a, 8, y. By 

making the substitution before forming the discriminant, the 
équation cans 

1 § 

73 ae 1234 Ch =% 
whose Aare differs only by a numerical factor from 
Q,- 3Q,Q,, a function still containing a, 8, y in the second 

degree, and therefore requiring further reduction. Jor this 

purpose the following formula is useful. 

QA + 

390. If we border the matrix of the Hessian both hori- 

zontally and vertically with three rows and columns, the 
resulting determinant is clearly the product, with sign changed, 

of the two determinants added horizontally and — 
Thus in particular if V, W be functions of the orders n’, n’”’ 

we have =A(VA(W)= 

a, h, g, a Vy Lb Pe Nee aia ee 

h, 6, f, B, Ve, M Rye Oss Ja ec 0 

Fs & hy ef ae ey Pee 0 

a By, (ey Py Wy * Oy 9, — tt 
W., W., W. Way Wo Wo Dy Oe re 

or A(V) A(W) 
” ; , W ” V 9 V a V an'n’VW (2) wR )-n"WR( +B ( G40 (2, 

and when 22/2’ satisfy the equation U=0, Me last term 
vanishes. ‘Thus in particular 

— V V up are Tar bs 2 2 (AV anv? (%)\ ov VR( -) 4B (,), 
or in the notation we have before used 

2 2 12 2 / - H Q; =(AH)' =n? HS — 2n' HR (H) +B fer 
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the last term denoting the result of writing in 3, instead of 
a, 8, y, the differential coefficients of H. 

In precisely the same way we get a formula of reduction 

for A?V by writing in the preceding determinant ’ 

da d 
dx? dy ” de 

and supposing the operation to be performed on V. In the 
reduction, then, we have instead of n’V, and of n” W, 

4 a + 7/ xa na ok a 
* de’ 4 dy’ - dz’ 

and the formula becomes | 

A°V=n! (n’ — 1)V (*) —2(n’-1)R co) + R* @ V, 
a a 7 Sie aa 

x 

for V, VV, and for W., W, W,, 

where. the last symbol denotes the result of substituting in = 
symbols of differentiation instead of «, 8, y, and operating on V. 

_ Introducing the value thus found for A’H into the value 
given for Q, (Art. 388), we have : 

Q,=- (n’ —n) 2H+4+2 (n’—n) Ry (HH) -L* ( fd, 
zx 

Thus, then, since Q, =— H we have in general 

(n’—n) Q,-—2'9,0,= 2 {(0 —n) eS —nH o uh 
x 

and in the case of the quartic, for which n=4, n’ =6, 

ar a0nm {) am) 3h x 

and accordingly the equation of the bitangential curve is 

(i) (f= x 

that is to say, if = written at full length is 

Ao? + BB’ + Oy’? +2F By +2Gya + 2HaB, 
this equation is 

aH” : ai” dH” 7d di fo dH dH dif 

GH fH fH en os aH ea =3H 7 ay Pat Cat ae OO Teds * E san SB) 
a curve of the fourteenth order. 
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391. The equation just obtained may be transformed by 
the help of the expression given (Conics, Art. 381, Ex. 1), for 
the condition that the polar line of a point, with regard to one 
conic, may touch another. We there saw that if az*+&c., 
a’x* + &c. be the two conics, we have 

(be —f*) (ax + h’'y + 9z)*+ &e.= {a’ (be —f")+&e.} {a’x*+ &e.}-F, 

where F denotes a conic covariant to the two conics. And, in 
like manner, that 

(Bc —f”) (ax + hy + hots &e.= {a We I”) + &e.} {aa*+&e.}—F. 

Now if a, b, c, &c. have the same meaning as before, and if 
a’, &c. denote the second differential coefficients of the Hessian, 
then, its degree being n’, (a’a + h’'y+ g’z) &c. are (n’— 1) times the 
first differential coefficients, and (bc —/”) (a’a + h’y + g’z)* + &e. 
is (n’ — 1)” times the covariant we have called © (Art. 231). We 
may give the name ©’ to the corresponding covariant in which 
the differential coefficients of the curve and of the Hessian 
are interchanged, and whose vanishing expresses the condition 
that the polar line of a point with respect to the curve should 
touch the polar conic of the same point with regard to the 
Hessian. In like manner, a’ (bc —f’)+ &e. is ® and a’a’* + &e. 
is n’ (n’—1)H. We have then the identities 

(n’-1)’@=n' (n’—-1) HO-F, O'= U0’-F, 

(n’-1)’O—7n’ (n’ -—1) Hb=0'- UP’, 

and in the particular case of the quartic where n’ = 6, 

250 — 30H = 0 — Ue’” 

Thus, then, the points of contact of bitangents are the inter- 
sections with the curve, not only of © — 3H® as already obtained, 
but also of 150-0’ or of O’—45H®; or, again, bitangential 
curves might be expressed in terms of the covariant F. 

392. Let us now proceed to the fifth order. We have 
(Art. 387) 

Q), =v (Q,) fe (n—1) (n—-5) = Q,+4 (n—1) iy (Q,) —4n (n—1) HP, ; 
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and using the value of Q, last obtained, and employing the 

abbreviations © for a and ® for i H, we have 

Q,=—n' (n'—n)HA(2)—n'(n’—n)EA(H)+2(n’—n) RAW(H)—-L?A(#) 

+ 4n(n—1) HA (3) +4 (n—1) (n— 5) SAH—4(n—1) Ry (AH) 

= — 2 (n’? —13n +.18) HAS — 2 (n? — 3n +8) SA (H) 

+4(n—3) RA (WH) —4 (n—1) Ry (A) — BA (®). 

In particular when n = 5, we have 

Q, =44HA (3) -362A (1) + 8RA (pH)—-16RYy(AH)—R'A(*). 

In this case we have also 

Q,=— 3621+ 8Ry (H)— Ro, 

Q=-AH, Q,=-H. 
In order to form the bitangential curve of a quintic, the quantity 
to be calculated is 

(27,9, — 5Q,9,)" = 5 (49, -9 ,9,) (5 9,’ — 129, Q,), 
a quantity containing afy in the sixth order, and which it is 

necessary, by the help of the equation of the curve, to shew to 

be divisible by 2°. Now, in virtue of a formula already ob- 
tained, we have 

40°-90,0,=R?(40— H®). 
It is also easy to shew that 27Q,0,—5Q,Q, and 5Q?— 120, Q, 

are each divisible by &; but I have not been able to carry the 

reduction further. 
We shew elsewhere (Higher Algebra, Art. 295) how all these 

calculations may be made by symbolical methods. 

393. Another method* of solving the problem of double 
tangents is suggested, by what was proved (Arts. 183, 235) that 
the point where the tangent to a cubic meets it again is 
determined by the intersection of the tangent with the line 
cH, +yH,+2H,=90. It occurs to attempt to form in like 
manner the equation of a curve of the order x — 2, which shall 

pass through the (n—2) points where the tangent to a curve 

* I gave this method in the Philosophical Magazine, Oct. 1858, and Quarterly 

Journal of Mathematics, vol. ul. p. 317. See also Memoirs by Prof. Cayley, 
Phil, Trans, (1859), p, 193, and (1861), p. 357, 
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of the n™ order meets it again. If the equation of this tan- 

gential curve were once formed, then, by forming the condi- 

tion that the given tangent should touch this curve, we 

should immediately have the equation of the bitangential. 

Now, what has been proved already as to the order of the 
bitangential will enable us to see what must be the order of 
the tangential curve in a’y’z’ and in the coefficients. ‘The con- 

dition that the line Lx+My+ Nz shall touch a curve of 

the (n—2)" order is of the order (n—2) (n—8) in L, UV, N, 
and of the order 2(n—3) in the coefficients of that curve. 
Consequently, if the coefficients of the tangential curve con- 
tain a’y’z’ in the order p, and the coefficients of the ori- 
ginal in the order gq, the bitangential must be of the order 
(n —1) (n — 2) (n- 3) 4+2p (n—3) in aw’yz’, and of the order 
(n — 2) (n—3)+2q(n—3) in the coefficients of the original. 
But actually the bitangential is of the order (n — 2)(n — 3)(n + 8) 
in ay’z’, and of the order (n+4)(n—8) in the coefficients of 

the original (Art. 382). It follows then that p =2 (n—2), g=3; 

that is to say, that the tangential must be of the order 2 (n — 2) 

in xyz’, and of the third order in the coefficients of the original. 

Further, we know that if a’y’z’ be on the Hessian, the tan- 
gential must pass through 2’y’z’, and therefore the substitution 

of w‘y’z’ for ayz must reduce the tangential to H. ‘This con- 

sideration and the known form of the tangential in the case 

of the cubic suggests that the tangential in general is the 
(n—2)” polar of a’y’z’ with regard to Hor A”"7H, for this is 
a curve of the right order in wyz, in a’y’z', and in the coeffi- 

cients, and it will pass through a’y’z’ when this point is on the 
Hessian. Accordingly, in the next article we examine whether 
the curve A**(Z) does pass through the points where the 

tangent meets the curve again, and though the answer is found 

to be in the negative, the process of examination leads to the 
true form of the tangential. 

394, Take then the origin on the curve, and the axis of 
y as the tangent, and let the equation of the curve be 

nby + $n (n —1) (c,x* + 2c.ay + c,y’) 

1 ; : 

+ 5” (n —1) (n — 2) (d,x*+ 3d,x°y+ 8d,xy’+ d,y’) + &e. - 0. 
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It is to be observed, and the remark will be useful in the 
sequel, that the several polars of the origin, with regard to 
the curve, are got by writing n—1, n—2, &c., for n in this 
equation. Now, in order that a curve may pass through the 
tangential points, its equation must be such that when we 
make y=0 it will reduce to 

y? 

Ga c+ n(n —1) (n—2)d.a+ &e.=0. 
1 

2.3 

‘Let us form then the equation of the Hessian, and since we 
are about to form its polar curves with regard to the origin, 

and then to make y =0, we need only concern ourselves with 
those terms of the Hessian which do not contain y. The 

second differeutial coefficients of the given curve are 

a=c,+(n—2)d,c+4(n—2) (n—3)e2' + &e., 

b=c,+(n—2) d,x+ 4 (n—2) (n— 3) ea + &e., 

‘. ¢= | 4 (n— 2) (n—3) ca" + &e., 

f=b +(n-2)ea+4(n—2) (n- 3) daz’ + &e., 

= (n—-2) c+ 4 (n—2) (n—3) d,v* + &e., 

h=c,+(n- a exc’ + Ke. 

The equation then of the Hessian is readily found to be 

¢,b° + (n — 2) d,b’x + {4 (n— 2) (n— 3) eb’ + (n— 1) (n—2) P} x? 

+ {k(n — 2) (n= 8) (n—4) f,B? + (n—1) (n- 2) Q 

+(n—1) (n—2) (n—38) RB} w+ &. =0, 

where for brevity we have written 

2P=¢,0, —¢,¢, + 2be,d,—2bed,, 2Q=d,c, —2c¢,¢,d, + ¢,d,, 

3h =c,0,d, — dc," + 2e,be, — 2c,be,, 
0°2° 0 

but the actual values of these quantities are not material to 
our purpose. What is important is to notice that the equation 

divides itself into groups of terms each having the same function 

of n as a numerical coefficient, so that if we want to form 
the equation of the Hessian of the first, second, &c., polar of 
the given curve with regard to the origin we have only to 
substitute n —1, n —2, &c., for m in the above equation. 

Now the line polar, with regard to the origin of a curve 
of the n™ degree u,t+ u,+&e.=0 being nu,+u,=0, the line 

ZZ 
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polar of the origin, with regard to the Hessian, which is a 
curve of the order 3(n—2) is, from the preceding equation, 

3c,+d,e=0, together with a term in y irrelevant to the present 

question; and since this equation does not contain n, we see 
that the polar of a point on a curve with respect to the Hessian 
of either the curve itself or of its polar curves all meet the 
tangent in the same point. In fact, the polar is in every 
case the same line. When n=8, 3c,+d,a is the result of 
making y= 0 in the equation of the curve; that is to say, 
the polar with regard to the Hessian is the tangential, as we 
have seen already. 

The equation of the polar conic of the origin with regard 
to a curve of the n™ order is 4n(n—1) u,+(n—1)u, +u,=03 
and therefore the polar conic with regard to the Hessian is 

3 (n — 2) (8n— 7) ¢,b° + (n—2) (8n-—7) d Dx 

+ {4 (n— 2) (n—3) 6,0? + (n—- 1) (n—2) P} a? =0, 

and it is evident, on inspection, that in the case of the quartic 
this polar conic cannot be the tangential, because it contains 
the group of terms P which do not similarly occur in the 

equation of the curve. But we can readily form an equation 

not containing these terms. Let A’H=0 denote the equation 
we have just obtained, and let A’H, denote the polar conic 
with respect to the Hessian of the first polar of the origin, 

and as we have already seen, A’H, is derived from A*H by 
writing n—1 form. Then it is easily verified that 

(n— 3) A°H —(n—1) AH, =(n—- 3) 8 {6c,+4d,a+e2'}. 

But when the given curve is of the fourth degree, the right- 
hand side is what the equation of the given curve becomes when 

we make y=0. It follows then that A’H-—38A°H, is the 
required tangential of a quartic. 

In precisely the same way the polar cubic of the origin, 
with regard to the Hessian, is found to be 

$ (3n — 6) (8n —7) (8n — 8) cb" + 4 (n — 2) (8n — 7) (82 — 8) dbx 

+ 4 (n—2) (n— 3) (3n— 8) ¢,b°2? + (n— 1) (n—2) (3n— 8) Pre 

+4(n-2)(n—8)(n—4) f,b'a°-+(n—1)(n—2)” Qa*+ (n—1)(n-2)(n-3) Ra’, 
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and A*H,, A*H,, &e. are found by substituting (n — 1), (n — 2), &e. 
for n. And we can verify that 

(n — 3) (n—4) A°H— 2 (n—1) (n—4) A°A, + (n— 1) (n—2) A°H, 

= 2 (n— 4) (100, + 10d,v + 5e,x* + fax’). 

And when n=5 the right-hand side of the equation is what 
the original equation becomes when we make in it y=0, and 
therefore it follows, as before, that the tangential is 

A’ H — 4A°H, + 6A°H, = 0. 

When n=6 the tangential is in like manner 

A‘H —5A‘H, + 10A‘H, = 0. 
I was hence led, by induction, to the conclusion which 

Professor Cayley has verified independently, that the tangential 
is in general 

A"? H — (n—1) A"°H, +4 (n—1) (n-2) A’? - &. = 0. 

395. It is easy to establish what has been stated above, 
that the polar lines of the origin are the same with regard to 
its Hessian, and to the Hessian of any of the polar curves. 

We hav oO = = ot + be, or employing the usual abbrevia- 

tions A for be—f”, &e., we have 

dH a(,@ fF @ 
dx Ty get baat Cae 

Fi Z i? ae 2H | U 

with similar expressions for the differentials with regard to 
y and z It is to be noted that these may be written in 

the abbreviated form on (") . Now the differential 
dx dx \d, 

coefficients of the first polar 2’ U,+y'U,+2U, are got from 
the corresponding coefficients of the original curve by per- 

d 
forming on them the operation 2’ = +y aie ae which 

when we substitute 2’y’z’ for xyz is equivalent to multiplying 
each by the factors n—1,n—2, &c. But the same numerical 
factor being common to every term in the expression for 7, 
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it-is plain that wH,+yH,+z2H, represents the same line 
whether the polar be taken with regard to the Hessian of the 
original, or to that of its first polar. And the same argument 

applies to the other polar curves. 
Let us proceed to the polar conic. If we differentiate the 

expressions just given for H, &c., the differential will consist 
of two groups of terms, viz. the differential on the supposition 

that A, B, &e. are constant, together with the terms got by 

differentiating these quantities. If we write, for shortness, 

E,, €to denote the symbols of differentiation with regard to 

X,Y, 2, we have 

B= ARP + By’ +&e.} U + EF {a(nb’—1/C)+ b (S6'—6'€)*+ &e.} U, 
it being understood that the accents in the last group of terms 
may be dropped after the expansion, the term &£an’¢", for 

he 8 lee okt 8 
é 

dady? dedz** The last equation may instance, standing for a 

be written in the abbreviated form 

erp (§ » (EE 
pu=—e (2) +8 (ep). 

Thus then the equation of the polar conic of any point, with 
regard to the Hessian, may be written V+ W=0, where V 
denotes a group of terms in each of which a fourth differential 

is multiplied by the product of two second differentials, and W 
a group in each of which a second differential is multiplied by 

the product of two third differentials. Now if we take the ~ 
Hessian of the first polar, then, as has been stated above, the 

second, third, and fourth differentials become multiplied by 

n—2,n—3, n—4 respectively, and the result is 

A*H, = (n—2) (n-—4) V+ (n-—3)"W=0, 

which when n =4 reduces to the latter group of terms. The 
equation of the tangential of a quartic is then evidently of the 

form V+kW=0, and may be transformed accordingly. Thus 
it may be written in the form 

d d dia Seen 

d d OM! fered ye 
43(a55 +9 7 +8 45) (4 ra + &e. | U'=0, 

z da 
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The equation of the bitangential curve is got by expressing 
the condition that the tangent Zx+ My + Nz should touch the 
conic just written; and it will evidently consist of three groups 
of terms, since the eagalcos that a line should touch S+ 4S" is 

of the fot =+kb+ #2’ =0. What answers here to 3 is the 

covariant called ©’; and I have verified that the other two 
groups of terms are also expressible in the form © + LH®.* 

POLES AND POLARS. 

396. It will be convenient to collect here some properties 
of the Jacobian of a system of three curves, stated Higher 
Algebra, Arts. 88 and 176, and elsewhere in this volume. The 
Jacobian is the locus of points whose polar lines with regard 
to three curves meet in a point, its equation being 

Co) Us Us 

W,) Wey Ws; 

* I attempted in like manner to obtain the bitangential curve of a quintic 

by writing down for the curve whose equation is given Art. 394, a covariant 

of the right order, and such that the absolute term vanishes if the axis of x 

touches the given curve a second time. For instance, if ~=40—-9H®, then 

4 (3) + &. and (4 5 . i oa &e. are covariants of the right order. Although I 

have not been successful, % may be useful for purposes of reference to give the 

values I obtained for the covariants in this case. It will be seen that, without loss 

of generality, we may suppose c, and c, to vanish, We have then 

H = 0c + 8b? (doa + dy) + 3 (be) — 4bcd,) x? + 8 (2b%e, — Sbcd,) xy + 3 (b%e,— beds) y? 

+ (b*fy — 16bce, + 18c?d,) x* + (8b2f, — 39bce, — 9b dod, + 9bd,? + 18c7d3) ay 

+ (— 6bef, — 12bd,e, + 12be,d, + 18c7e, + 24ed,d, — 18cd,") «* + &e., 

© = 90? {(b4d,? + 60%c7d,) + (4b4d eg + 120%c?e, — 6b3edyd, — 57b7c%d2) x 

+ (4b*d,e, + 1203c%e, — 28b%cdyd, + 31b%cd,? — 39b7c%d3) y 

+ (204d fy + 4bte,? + 64%? f, + 6b3cdye, — 48b%cdye, — 105b7c%e, — 29307c?d,d, 

+ 26907c%d,? + 36dc'd,) x? + &e.}, 

& = 66 [(03e,4+462cd,) +x (b3 f,-8b2ce,—38b07d,) +y {b°f\— 20ce,+27b? (d,?— dyd) —41 bcd} 

+ x? (— 12b%cf, — 12b2d,e, + 12b%e,d, + 6be7e, — 162bcd,d,+ 168dcd,? — 6e8d3) + &e.]. 

Of the quantities A, B, &c. the only ones which contain terms independent of x and 

y are A= 0?, F= bc; so that if any quantity w of the form 9+/H® written at 

full length be 4 + Bor + Byy + Cyz? + &e., then the degree of w being 22, the 
d? 

absolute term in the covariant A (S) + &e. is 0?-B,? + 44bcAB,, and in A A ¢ + &c, da? 

is 20?C, + 42dcB,. 
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We have seen, Art. 191, that the Jacobian is the locus of the 

double points of curves of the system 

Aut pu +vw =0. 

If the three curves have a common point, ig point is on 

the Jacobian. For, from the equations 

rU+ YU,+ ZU,= MU, xv, + yv,+ 20, =m'v, ew, + yw,+ 20, =m", 

(where m, m’, m” 

tively), we have 
are the degrees of the three curves respec- 

Jae = mu (v,W, — ¥,0,) + mv (w,u, — W,u,) + mw (u,v, — U,,), 

which we may write 

Jx=mAu+m' Bo + m’ Cw, 

whence evidently J vanishes for any values which make u, v, w 
to vanish. 

If the three curves be of the same aeoe, this common point 

is a double point on the Jacobian. For differentiating with 
respect to x, we have 

Ta inn 4 iy et my Uo 
La pad dla ne ca tea ay jigs y 

but since Aw, + Bv,+ Cw,=J, we see that when m=m' =m’, 

+ mAu, +m’ Bo, +m” Cw,; 

Go itt vanish for any values which make wu, v, w and con- 
dx 

sequently J to vanish. So, again, 

add GAs ORs @ 5 BO 
—_—= meen ee Cicer a UR AP me 

dy dy 
which, since Aw, + Bv,+ Cw,=0, vanishes for any values that 
make wu, v, w, J to vanish, when m=m’=m". In like manner 

the other differential coefficient of J vanishes for the same point. 
If only two of the curves be of the same degree, the 

Jacobian touches the third curve at the common point. For 
the equation written above, when we make m=m’, becomes 

add dA dB dC 
a tg Pe ali ae + mn wT + md + (m” —m) Cw, 

+ mAu, + m’ Bo, +m’ Cw,, 

J+a2 

and for the common point, this reduces to «J, = (m” —m) Cw,; 
and we have, in like manner, 

xd, =(m"” —m) Cw,, xJ,=(m’ — m) Cw,; 
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so that ad, + yJ,+2J,=0, xw, +yw,+2w, =0, 

represent the same right line. 
If in this case the common point be a double point on w, 

it will also be a double point on J, having the same tangents 
as those for the curve w.* 

The values just, obtained for J,, J,, J, evidently vanish when 
W,) Wy w, vanish. Differentiating again, and omitting the 
terms which vanish as containing uw, v, w, J, J, or w,, Wy Wy 
we have 

ad dA dB = 
eas m (u, Je tt i) + (m” —m) Cw,,. 

But from the values previously found for A and B, we have 

dA dB 
U, dx a dx pails (VW, oe V,W,.) + YU, (20,,2, oe Ws) 

and by eliminating xyz from the equations 

- 

LU, + YU, + 2uU,=0, xv, + yv,+2v,=0, rw, + yw,,+2w,,=0, 

we have 

U, (V,W,5 — V,W,.) + U, (00,0, — W,,4,) = — ,, (UU, — U0.) =— Cw.) 

or xd, = (m” —2m) Cw,,, 

and similarly the other second differential coefficients of J are 

proportional to those of w; or the two curves have the same 
tangents at their common double point. 

397. It is proved, as in Art. 190, that there are 

(m — 1)’ + (m—1) (m’ — 1) + (m’ — 1)? 

points, whose polar lines, with respect to two curves w, v, are 

the same, and through these points must pass the Jacobian of 

u, v, and any third curve. It was shewn (Art. 97) that the 
Jacobian intersects u in the points which can be points of 
contact of w with curves of the system v+Aw. Hence, it 
immediately follows that the locus of points, which can be 
points of contact of curves of the system w+ Au’ with curves 

of the system v+ mv’, where u and w’ are of the degree m, and 

v and v’ of the degree m’ is a curve of the order 2m+ 2m’ — 3, 

* Clebsch and Gordan, Abelsche Functionen, p. 62, 
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whose equation may be written in either of the equivalent 
forms :* 

Uy Uy. Us Uy) U., U, 

vw U's, W's w', i ws, U's w’, = 0, 

Vy Voy Us v's Va je 

Yr Vy Us Vy Uy Us 

UW} Vy Vey Vg | —U! Vy Vey Vy | = Oz 

wy Uo U, Wy Wo ws 

Again, it appears from the preceding that the points in 
which curves of the systems w+ Aw’, v+pv, w+vw’, can all 
three touch, are among the intersections of two curves of the 

degrees respectively 2m+2m’—3, 2m+2m”—3. But among 
these intersections are included the m” points w, w’; and the 

3 (m—1)’ points common to the Jacobian of all curves of the 

system u+Aw’. Deducting these numbers, we obtain for the 

number of points in which the three curves can touch 

A (mm! + m'm” + mm) — 6 (m +m’ +m”) 4+ 6. 

398. We have seen (Art. 97) that the order of the condition 
of contact of two curves u, v, or, as we shall call it, of their 

tact-invariant, is in the coefficients of v, m (m+ 2m’— 3) — 26 - 3x 

or n+2m(m’—1); and, in like manner, of the order n’+2m’(m-—1) 
in the coefficients of uw. The tact-invariant, in the case of 
two conics, was found (Conics, Art. 372) by forming the dis- 

crimmant of w+2v, and then the discriminant of this con- 

sidered as a function of ». By similar reasoning to that 

used in the case of conics, it may be shewn that if the same 

process be employed in the case of two curves of the m™ 

order, the tact-invariant is a factor in the result. In fact 

if A be the tact-invariant, B=0 the condition that it may 

be possible to determine » so that wt+Av may have two 

double points, and C=O the condition that it may be possible 

to determine X so that w+Av may have a cusp, then the 

discriminant, with respect to A, of the discriminant of w+dz, 

* Steiner has remarked that the number of curves of the system wu + Aw’, which 

osculate curves of the system v + pv’ is 3 {(m +m’) (m +m’ — 6) + 2mm’ + 5}, Crelle, 

vol. XLVII. p, 6. It will be remembered that we have seen, Art. 102, that the con- 

dition for two curves osculating is, in addition to the conditions of ordinary contact, 

that the ratio of H to L* shall be the same for both, 
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is AB*C*. That Band C are factors appears by taking wu as 
a curve which has either two double points or a cusp. In 
this case, not only the discriminant of vanishes, but its 

differentials, with respect to each of the coefficients of u (Higher 
Algebra, pn 116); therefore, in the discriminant of u+ dz, 

the term not containing » and the term containing its first 

power both vanish, or A” is a factor in the discriminant ; therefore 
its discriminant ganalilceed as a function of X vanishes. 

Thus, if « and v be cubics, the discriminant of each contains 
its coefficients in the twelfth degree, and these coefficients enter 
in the one hundred and thirty-second degree into the dis- 

criminant with respect to >. But the tact-invariant contains 

the coefficients of each in the degree eighteen; and the invariants 

which vanish when w+ Av can have a cusp, or a pair of double 

points, contain the coefficients of each curve in the degrees 

twenty-four and twenty-one respectively. Jor the degree in 

the coefficients is the same as the number of curves of the form 

u+hv+pw which have the singularities in question. In the 
case of the cusp, this number is found by putting the inva- 

riants S=0, 7’=0; giving thus an equation of the fourth and 

one of the sixth degree to determine >, mw, and we have 
twenty-four solutions. In the case of the two double points, 

we may suppose uw, v, w to have seven points common, and 

through these points we can have twenty-one systems of a 

line and a conic. We have then 132 = 18 + 2 (21) + 3 (24). 

399. In general the discriminant being of the degree 
3(m—1)*, the discriminant with respect to X contains the co- 

efficients of each curve in the degree 3 (m—1)’ (3m*— 6m + 2). 

Now the tact-invariant contains the coefficients of each in the 
degree 8m(m-—1), and from considerations afterwards to be 
explained, it appears that the order of the condition that 
w+ dv may have a pair of double points, (or, what is the same 
thing, the number of curves of the system w+2Av+ ww, which 
have two double points), is 3 (m— 1) (8m*—9m*—5m 4+ 22), 
and the corresponding number for the case of the cusp is 

12 (m—1)(m—2); and it may at once be verified that 

3 (m— 1)" (8m" — 6m + 2) 

=3m(m—1)-+3 (m—1) (3m°— 9m?— 5m + 22) + 36 (m2 — 1)(m — 2)- 
; AAA 
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In like manner, having formed the discriminant of Au + wo + vw, 

where uw, v, w are curves of the same degree, we may form 

the discriminant of this considered as a function of A, mw, V3 
and this discriminant will contain as factors the resultant of 

u, v, w, and the conditions that it may be possible that a curve 
Au + wv+vw may have three nodes, or may have a node and 
cusp, or may have a tacnode; the order of any of these 

conditions in the coefficients of any of the curves being the 
same as the number of curves of the form Au+ wo+ vw+t=0, 

which have the singularity in question. When the curves 
are all conics, the discriminant, considered as a function of 
A, M, v, of the discriminant of Aw+puv+vw, is AB’, where A 

is the resultant of wu, v, w, and B=0 is the condition that 
Au+pv+vw=0 may be capable of representing two coin- 

cident right lines, but I am not in possession of the general 
theory. 

400. In connection with this subject it may be observed 

that, the tact-invariant of a curve and its Hessian being of the 
order 3(m—2)'5m—9) in the coefficients of the former, and 

of the order m(7m—15) in the coefficients of the latter, is of 
the order 6 (6s*—17m+9) in the coefficients of the original. 
When m= 3, this tact-invariant is the sixth power of the dis- 
criminant; and assuming, therefore, that the sixth power of the 

discriminant is always a factor, there remains a factor of the 

order 6 (m— 3) (3m — 2), whose vanishing expresses the condition 

that the curve has a point of undulation. 
Again, take the condition that the curve, its Hessian and 

bitangential have a common point; this condition being of 

the orders respectively 3 (m—2)* (m?—9), m(m—2) (m*— 9), 

3m (m—2) in the coefficients of these curves is of the order 

3 (m — 2) (m —3) (8m + 8m — 6) in the coefficients of the original. 

When m=4, this invariant seems only capable of being ac- 
counted for as the twelfth power of the discriminant multiplied 

by the square of the invariant last considered. And assuming 

that the same factors are to be found in general, there remains 
an invariant of the order 3 (m— 4) (8m* + 5m’ — 32m + 18), 
which will vanish whenever the curve has an inflexional tangent 

which elsewhere touches the curve. 

ee ae vs 
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401. As the Jacobian is the locus of points whose polar lines 
with respect to three curves meet in a point, so we might 
consider the locus of the points in which these polar lines 
meet; or, what is the same thing, the locus of points whose 

first polars with respect to the three curves have a common 

point. We shall confine ourselves to the consideration of the 

case when the three curves are the three first polars of a 
given curve, in which case the Jacobian is the Hessian of that 

curve, and the other locus now mentioned is its Steinerian (see 
Art. 70), the theory now to be explained being the generalization 
of that given for the cubic* (Art. 175, &c.). 

To any point P, then, on the Steinerian corresponds a point 
@ on the Hessian; the first polar of P has @ for a double 
point, and the polar conic of @ consists of two right lines 
intersecting in P. Consider two consecutive points P, P’ on 

the Steinerian; then, as in Art. 178, the intersection of their 
first polars will be the point @ counted twice, together with 
the points of contact of the first polar with its envelope. Thus, 

then, the polar, with regard to the curve, of any point Q on 
the Hessian, is the tangent to the Steinerian at the corre- 

sponding point P. In particular, if Q is a point of inflexion 

on the curve, its polar will be the tangent at that point; thus 
we see that the Steinerian is touched by the 3m(m—2) sta- 

tionary tangents of the curve. 

402. We have seen, Art. 70, that the orders of the Hessian 
and Steinerian respectively are 3(m—2) and 3(m-— 2)’; the 

Hessian ordinarily has no double point, and therefore its 
Pliickerian characteristics are 

#=3(m—2), 8=0, «=0, v=3(m—2) (3m—7), 

T= 24 (m—1)(m— 2) (m— 3) (3m—8), 1=9 (m-— 2) (3m—8). 

Since there is a (1, 1) correspondence between the Hessian 
and Steinerian, the deficiencies of the two curves will be the 

* The principal theorems of this section were given by Steiner in a paper read 

before the Berlin Academy, 1848, and afterwards reprinted in Crelle, 1854, vol. XLVII. 

The theory, as regards the cubic, was given by me in the former edition of this 

work (1852) in ignorance of what Steiner had done, with which I only became 

acquainted through Credle. 
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same. We have also the class of the Steinerian; for any tan- 
gent thereof which passes through a fixed point J/, must have 

its pole lying on the first polar of M, and since it must also 

lie on the Hessian, it must be one of the 3(m—1) (m—2) 

intersections of the two curves. The characteristics, therefore, 
of the Steinerian are 

b=3(m—2)’, v=3(m—1) (m2), 

5 = 3 (m— 2) (m —3) (3m?—9m—5), «=12(m—2) (m—83), 

T= 3 (m—2) (m—3)(3m*—3m—8), t=3(m—2) (4m- 9). 

A point is a double point or cusp on the Steinerian, if it is a 
point whose first polar has two double points or a cusp. The 
numbers therefore 5 and « just obtained are the number of 
first polars of points of the given curve which have the singu- 
larities in question (see Art. 399). 

403. If the first polars of any two points A, B touch at 
a point @, having QP for their tangent, then two of the poles 
of the line AB coincide with Q; and the first polar of any 
point on AB (other than the intersection of AB with PQ) 

will also touch QP at Q. ‘The first polar of the excepted 

point or intersection of AB with PQ, will have Q for a double 
point; Q will be a point on the Hessian, and P the corre- 

sponding point on the Steinerian. ‘Thus the Steinerian is the 

envelope of lines, two of whose poles coincide; and the Hessian 
is the locus of such coincident poles. Steiner has investigated 

the envelope of the line PQ, which joins two corresponding 

points P, Q, or which is the common tangent of two first polars 

which touch each other. This curve we shall call, as in the 

case of cubics (Art. 177), the Cayleyan.* It has evidently 
a (1, 1) correspondence with the Hessian, and with the Steinerian, 
and has therefore the same deficiency. 

In order to determine its class we use the principle estab- 
lished, Art. 372, and Conics, Appendix, that if two points on a 
line (or two lines through a point) havea (m, m’) correspon- 

dence, there will be m+ m’ cases of coincidence of these points. 

* Professor Cayley himself calls it the Steiner-Hessian, 
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Consider, then, the lines joining any assumed point M to 
two corresponding points P, Y. Then, since the Steinerian is 

a curve of the order 3(m—2)’, if the line MP be fixed there 

will be 3 (m—2)* positions of P and as many positions of MQ. 
In like manner, to any position of MQ correspond 3 (m— 2) 
positions of P. There are, therefore, 3 (m—2)*+3 (m—2) or 

3 (m— 1) (m—2)’lines which can be drawn through J contain- 

ing two corresponding points P, Q, and this is therefore the 

class of the Cayleyan. It obviously touches the inflexional 
tangents of the given curve. It has no inflexions, and its 

characteristics therefore are 

jp =3 (m—2) (5m—11), v=3(m— 1) (m—2), 

5 = 3 (m — 2) (5m — 18) (5m? - 19m +16), «=18 (m—2) (2m—5), 

T=2(m—2)"(m?—2m—1), +=0. 

404, The definitions already given may be further extended, 
by considering the double points not only on first polars, but on 
any of the system of polar curves. The locus of a point, such 
that its @-polar has a double point, is a curve of the order 

30 (m— 6 —1)’, which is the 6-Steinerian; and the locus of the 

double point is then a curve of the order 36° (m-— @-1), which 
is the 0-Hessian. We know that if the @-polar of a point P 

passes through a point Q, then the (m— 6) polar of @ passes 
through P; and it is easy to see also that if the @-polar of a 
point P has a double point Q, then the (m-—@-1) polar of 

Q has a double point P. Hence the @-Steinerian is the same 

curve as the (m—@—1) Hessian, and the @-Hessian the same 
as the (m—@-—1) Steinerian. In like manner we might con- 

sider the @-Cayleyan or envelope of the line joining corre- 
sponding points on the 6-Steinerian and @-Hessian, the three 
curves having the same deficiency. Except in the case of 
@=1 these curves have not been much studied. 

405. We have studied (Art. 184) the envelope of the polar 
lines, with regard to a cubic, of the points on a right line, 

which we have called the polar of that right line. So, in 

general, if a point P moves along any directing curve S of the 
order s, the envelope of its 6-polar, with regard to a given 
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curve U of the order m, will be a curve which may 
be called the @-polar of S, with regard to U. We saw 
(Art. 96) that the envelope of a curve, whose equation con- 
tains as parameters the coordinates of a point which moves 

along a curve S, may be found by considering the parameters 

as coordinates, and then expressing the condition that the 
moving curve should touch S. Hence, the 6@-polar of 9 is 
also the locus of points whose (m—8@) polars touch S. Using 
then the expression (Art. 97) for the order of a tact-invariant, 
we see that the @-polar of S is a curve of the order 

s (s +2@—3) (m— @), this number to be diminished by 2 (m-— @) 
for every double point, and by 3(m-—@) for every cusp 

on S; or, if the class of S be s’, then the @-polar will be 
of the order , 

(m — @) {s’ + 2s (@—-1)}. 

It will be of the order 0(2s+ 6-8) in the coefficients of S. 
Thus, in particular, if @6=1, the envelope of the first polars 

of the points of a curve S is the same as the locus of the poles 
of the tangents of S, its order being s’(m—1). If in this 

case s=1, this order reduces to 0, as it ought, since the 

envelope then reduces to the (m—1)* poles of the line S. 

In general, it is obvious that each double tangent of S will, 

by its (m—1)* poles, give rise to (m—1)’ double points on 

the envelope, and that each stationary tangent of S will give 

rise to (m-—1)* cusps on the envelope. We have, therefore, 

for the class of the envelope 

(m —1)"s—(m—1)s’-—2(m--1)?’r—3(m—1)* 0; 

or, since s” —s’ —27 — 3u=s, the class of the 1-polar is 

(m—1)(m—2)s’+(m—1)’s 

If 0=m-—1, the envelope of the polar lines of the points 
of a curve S, or locus of points whose first polars touch S, 
is of the order s(s+2m-—5) or s’+2s(m—2). And since 
the number of these polar lines which pass through an 
arbitrary point I is the same as the number of intersections 

with § of the first polar of M, the class of the envelope is 

(m—1)s. 
In general the number of double points on the baile of 

S is (m—6)* times the number of (m-—1) polars of a point 
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which touch the curve twice, and the number of cusps is 
(m— @)* times the number of such polars which osculate the 
given curve. 

406. If the @-polar of a curve 8 be a curve R, then the 
(m—@) polar of & must include, as part of itself, the curve S. 
Thus, for example, if 9=m-—1, 2 is the envelope of the polar 
line of a point P which moves on S; but since the pole of 
this polar line may not only be the point P, but (m—1)’-1 

other points besides, it follows that if we seek the locus of 
the poles of the tangents of & (or, what is the same thing, 

the envelope of the first polars of the points of #), we shall 

get the curve S, together with another curve, which is the locus 
of points copolar with the points of S; that is to say, having 

the same polar lines. In this case, where 0=m-—1, we have 

seen that the class of # is s(m—1); therefore, Art. 405, the 
envelope of the first polars of the points of & is of the order 
s(m—1)’; or, in addition to the curve S, there will be a 

companion curve of the order sm(m—2). We have seen that 

every point on the Hessian is a point at which coincide two 
poles of a tangent to the Steinerian; consequently, the points 
in which S meets the Hessian will be points on this companion 

curve, which will, besides, meet S in 4s (m—2)(m—3) pairs of 
copolar points. 

If @=1, & is the locus of the poles of the tangents of S, 

and since a given point has one polar, if we seck the envelope 
of the polar lines of the points of R, we must fall back on the 
curve S, and it would appear that there can be no companion 
curve. It is to be noted, however, that the common tangents 

of S, and of the Steinerian, form part of the envelope. In fact, 

we have seen that to each of these common tangents there 
correspond two coincident points on &, and therefore when 
we employ the converse process, to these two points answer 

_ two coincident lines, every point on either of which has a 
right to be counted in the envelope. Further, the curve S- 

must be reckoned in that envelope (m-— 1)’ times, because to 
every tangent of S there answer (m-— 1)’ poles lying on &, and, 

therefore, when we take conversely the polars of the points of 
R, each tangent of S is counted (m—1)* times. Now we have 
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seen that if the order and class of & ber and 7’, the order of 
its (m —1) polar is 7’ + 2 (m—2)r, but 

r =(m—1)(m—2) 8 +(m—1)?s, r=s' (m- 1); 

hence, the order of the polar is 3 (m—1)(m—2)s’+(m—1)*s, 
which agrees with what we have established, since, as the 

Steinerian is of the class 3(m—1)(m—2z), the number of its 
common tangents with S is 3 (m—1)(m—2)s’. There must 
be a like general theory of the reciprocity when FR is the 

6-polar of S, and S the (am—@) polar of &, but this has not 
yet been investigated. 

OSCULATING CONICS. 

407. The form of a curve in the neighbourhood of a point 
f thereof is defined by the circle of curvature, but it admits 

of a further definition. In fact, drawing parallel to the tangent 

at P an infinitesimal chord QR, then if the normal at P meets 
this at N, the arcs PQ, PR, and the lines NQ, NR, regarded as 

quantities of the first order, are equal to each other, but they 
differ by quantities of the second order; in particular, NQ, NR 
differ by a quantity of the second order; or, what is the same 

thing, if Z be the maddle point of QR, then the distance NZ is 

of the second order. But observe that PN is also of the 

second order; hence the angle LPN, =tan’ZLN+PN is in 

general a finite angle; that is, joining P with the middle point 

of the chord QF (parallel to the tangent at P), we have a 

line PL inclined at a finite angle to the normal. In the case 
of the circle, PZ coincides with the normal; hence the angle in 

question is a measure of the deviation from the circular form, 

or we may call it the “aberrancy,” and the line PZ the axis 

of aberrancy.* 

In the case of a conic, the axis of aberrancy is the diameter 
through P, and the aberrancy is the inclination of this diameter 

-to the normal. And for a given curve, drawing any conic 

having therewith a 4-pointic intersection at P, the curve and 

* See Transon, “ Recherches sur la courbure des lignes et des surfaces,” Liouwv., 

t. VI. (1841); his term ‘déviation’ is in the text replaced by the more specific one 

“ aberrancy.” 
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conic have the same axis of aberrancy; that is, the centres 
of all the conics of 4-pointic intersection with the curve at P 
lie on the axis of aberrancy at this point. Whence also the 
axis of aberrancy at P and the axis of aberrancy at the con- 
secutive point of the curve, intersect in a point, say the “ centre 
of aberrancy,” which is the centre of the conic of 5-pointic 
intersection with’ the curve at P; this conic is completely de- 
termined by the conditions that its centre is this point, that 
it touches the curve at P, and that it has there a curvature 
equal to that of the curve. 

It is easy to show that the aberrancy at the point P is given 
by the formula 

where p, g, 7 are the first, second, and third differential coeffi- 
cients of y in regard to a. 

408. Observe that the axis of aberrancy is a line having 
reference to the line infinity, but independent of the circular 
points at infinity; viz. if instead of these we had any two 

points J, J, then the line in question is constructed by means 

of the line JJ without any use of the points J, J themselves; 
the chord Qf is taken so as to pass through the intersection 

O of the tangent at P with the line JJ, and we have then 
£ the harmonic of O in regard to the points Q, R 

The theorem that the centres of the conics of 4-pointic 
intersection lie in a line may be presented in a more general 

form; the conics have, of course, a 4-pointic intersection with 
each thes or, what is the same thing, they are conics having 
all of aes four common tangents (viz. the tangent at P 
taken four times); the general theorem is, that for the 
system of conics touching four given lines, the poles of any 

line in regard to the several conics of the system lie in a line ; 
a theorem which is better known under the reciprocal form, 

that for the conics passing through four given points, the polars 

of any point in regard to the several conics pass all through 
one and the same point. 

In the case where the circular points at infinity are replaced 
by a conic, there is not any analogous theory of aberrancy. 

BBB 
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409. The investigation, Art. 236, of the equation of the 
conic of 5-pointic contact at any point on a cubic may be ex- 
tended to curves of any degree. Let S represent the polar 
conic and 7’ the tangent at the point, then the equation of 
any conic touching at the same point will be S—P7'=0, 

where P is lx+my+nz; 1, m, n being still undetermined. 
Then the equation of the lines joining to the point 2’y’z’, the 
intersections of the conic and the curve is obtained by sub- 
stituting in the equation of each curve a’ +a for x, &e., and 
eliminating % between the two equations. The result of the sub- 
stitution in the first equation is Z7’'+ 4X84 4r7A* 4+ sr? A* + Ke. 5 
and the result of the substitution in the equation of the conic 
is 2(n—1)7—-P’'T+2(S—PT); and if this last be written 

67'+2V, the result of eliminating ’ between the two equations 
becomes divisible by 7} the quotient being 

V"*—40V""*S+40V"° TA’ — &. =0, 

which represents the 2(n—1) lines joining the point a'y’z' to 
the 2(n—1) other points common to the conic and curve. In 

order that the conic should have a 3-pointic contact with the 

curve, one of these lines must coincide with 7; or the equation 
just written must be divisible by 7; and since every term, 
except the two first, is so divisible, this condition is plainly 
equivalent to 9=2, which, since 6=2(n—1)—P’, implies 

P'=2(n—2).* Introducing this value of @, and performing 

the division by 7, the equation reduces to 

— PV"? +% V"*A® —4V""* Ta* + &. =0, 

which represents the 2n — 3 lines joining the point a'y’z' to the 
other points of intersection of the curve and conic. 

The contact will be 4-pointic if this equation be again 
divisible by 7 or if $A°—PS be divisible by Z. The con- 
dition that this shall be the case is found, as in Art. 382, by 

substituting in this quantity the coordinates of an arbitrary point 
on 7, viz. My- NB, Na-— Ly, L8—Ma when it ought iden- 

tically to vanish, and in this way we find immediately that P 
aH.’ ai: 2 dH 

must be of the form wD + ( « a a +2 i) where pu 

* The problem of finding the circle of curvature at any point on a curve is 

evidently that of describing a 3-pointic conic passing through two fixed points, 
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is still indeterminate. Thus the chord of intersection with the 
polar conic of every 4-pointic conic meets the tangent in the 
fixed point, noticed Art. 394, where the tangent meets both 
the polar cubic, and also the polar line of z'y'z', with regard 
to the Hessian either of the curve itself or of any of the 
polar curves. | 

A 
4 

Let us denote by [1 the line A (« GH «adit o), 

da +4 dy + * Gd 
and allowing that we have the identical equation A°—IS=J7, 
then, introducing the value for P, $11+ 7, the equation be- 
comes divisible by 7, and gives for the equation of the 2n—4 

lines, joining to 2’y'z'’ the other intersections of the curve and 
conic 

(37+ P?—pS) V"*—4V"*A* + &e. =0. 

The condition for 5-pointic contact is, that this equation should 

be divisible by 7, and we determine the value of » correspond- 

ing to such contact, by substituting in the terms above written 
My—-NB8, Na-Ly, LR - Ma for x, y, 2. From the identical 

equation of Art. 235, we can infer what J is, and I have 
found that, by the substitution just mentioned, J becomes 

—3(n—1)(n—2) 34 Ae ee) i Eh H), where 3, f, and yH 

have the same meaning as in say 386. The results of substitution 

in 8, P, and in A‘ are Q and Q, respectively. Using 
2 

» 3H Ye 
then the values of Arts. 390, 391, we have 

pL” = % {3 (n— 1) (n- 2) TH —2 (n—1) Ry (A)} 

—§ {9 (n—2" H3- 6 (n— 2) Tiny (1) + 2h 

-$ 4-6 (n—2) (v3) BH +4 (n -3) BY (WL) - pO}, 
1 

9H* 
whence reducing, (4@ — 3H), and the 5-pointic conic 

is determined. 

410. Prof. Cayley has pursued the enquiry so as to ascertain 

what condition must be fulfilled by the coordinates 2'y’z’ in order 

that the contact may be 6-pointic (see Phil, Trans., 1865, p. 545). 
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The investigation is too long to give here; his result is that 
a'y'z' must satisfy the equation 

(m — 2) (12% —27) HJ (U, H, ®) - 3 (m—1) HJ'(U, H, ®) 

+40 (m—2)’J(U, H, ©)=0 

where by J(U, H, ®) is meant the Jacobian of these three 
functions, and by J’ is meant that, in taking the Jacobian, 

® is to be differentiated on the supposition that the second 
differential coefficients of H, which enter into the expression 
for ®, are coristant. The equation here written represents a 

curve of the order 12m-— 27 whose intersection with U deter- 

mines m (12m — 27) sextactic points. 

SYSTEMS OF CURVES. 

411. The problem to find how many conics can have a 
6-pointic contact with a given curve belongs to the class of 

questions on which some remarks were made, Conics, Ap- 

pendix on systems of conics satisfying four conditions. We 
shall here somewhat develope the theory there indicated. 
De Jonquitres, Liouville, t. VI. (1861), considered the properties 
of a series of curves of the m‘ order satisfying 42 (m+ 3) — 
conditions, that is to say, one less than the number sufficient 
to determine the curve, the series being characterized by its 
index N, where N is the number of curves of the series which 
can. pass through an arbitrary point. Thus, if the equation 

of the curve algebraically contains a parameter, N will be 
the degree in which that parameter enters.* Chasles, in papers 
in the Comptes Rendus, 1864—1867, on the number of conics 
which satisfy four conditions, used, instead of De Jonquiéres’ 
single index, two characteristics, viz. ~ the number of curves 
of the series which pass through an arbitrary point, and v the 

number of them which touch an arbitrary line. This method 

* Prof. Cayley has remarked that it is not true conversely that the equation of 

a curve belonging to a series whose index is N, can be always expressed in this 

form. For instance, the index will be plainly WN if the equation contain linearly 

the coordinates of a parametric point limited to move on a plane curve of the order 

NN, and unless the curve be unicursal, the equation cannot, without elevation of 

order, be made an algebraic function of a single parameter. Or, more generally, the 

equation may contain linearly the coordinates of a point limited to move on a curve 
in space of & dimensions, 



SYSTEMS OF CURVES. 373 

is especially convenient as giving symmetrical results in the 
case of conics which are curves of the same order and class. 

A sketch of this method is given in Conics, J. c., and we 
shall here repeat a few of the theorems, stating them for a 
series of curves of any order. 

412. The loets of the poles of a given line, with respect 

to curves of the series, is a curve of the degree v. For this 
is obviously the number of points in which the line itself can 
meet the locus. ‘The envelope of the polars of a given point, 
with respect to curves of the system, is, in like manner, a 
curve of the class yp. 

The locus of a point whose polar, with regard to a fixed 
curve (whose order and class are m’, n’), coincides with its polar, 

with respect to some curve of the system, is a curve of the order 
v+m(m'—1). For, in order to determine how many points of 
the locus lie on a given line, consider two points A, A’ on that 

line, such that the polar of A, with regard to the fixed curve, 
coincides with the polar of A’ with regard to some curve of 
the system, and the problem is to know in how many cases 
A and 4A’ can coincide. Now, first, if A be fixed, its polar, 

with respect to the given curve, is also fixed, and the locus 
of poles of this last line, with respect to curves of the system 
being by the first theorem of the order v, we see that to any 

position of A answer v positions of A’. Secondly, let A’ be 
fixed, and since its polars, with respect to curves of the system, 

envelope a curve of the class mw, and since the polars, with 
respect to the given curve of the points of the given line, 

envelope a curve of the class m’—1, Art. 405, there are yw (m'—1) 
common tangents to the two envelopes, and therefore as many 

positions of A answering to A’. The number then of coin- 

cidences of the points A and A’ is v+m(m'—1), or this is the 
degree of the locus in question. It is obvious that»this locus 
meets the fixed curve in the points where it is touched by curves 
of the system, and therefore that the number of these curves, 
which touch the fixed curve, is m’ {v+ pu (m'— 1)}, or is m'v+n'p, 

413. In general, the number of curves of the system which 
satisfy any other condition will be of the form ywa+vf, and 
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the numbers a, 8 may be taken as the characteristics of this 
condition. If a curve be determined by a sufficient number of 

conditions of any kind, and if these characteristics be given for 

each condition, we can determine the number of curves satisfying 

the prescribed conditions. "We exemplify this in the case of 
conics. ‘The number of conics determined by five points, by 
four points and a tangent, by three points and two tangents, 

<— 1, 2, 4, 4, 2, 1, 

and, consequently, the characteristics of the systems determined 

by four points, three points and a tangent, &c. are 

(1, 2), (2, 4), (4, 4), (4, 2), (2, 1). 

The number then of conics satisfying the condition whose 
characteristics are a, 8, and also passing through four points, 
or through three points and touching a line, &c. are 

a+28, 2a+48, 4a+48, 4a+28, 2a+8. 
" If we call these numbers pp”, v'", p’’, ao", 7” respectively, 

we see that they are not independent, but we have 
mt mt y" = 2p", a= 20", p"=3 (v4 0"). 

The characteristics of the systems formed with the condition 

a, 8 together with three points, or together with two points 

and a line, &c. are plainly 

(Mm, Vv"), (v'", pods (p""; a"), (o", 7) 

And therefore the number of conics of these systems respec- 

tively which satisfy a new condition a’, #’ is p”a'+v''B, 
va +p''B', &. Or, writing at full length, if we have two 
conditions whose characteristics are (a, 8), (a, 8’), and if we 
denote by p”, v", p’, o” the number of conics which satisfy 

these two conditions, and also pass through three points, or 
pass through two points and touch a line, &c. we have 

w= aa! +2 (Ba' +a6')+488', v"=2aa' +4 (Ba! + a6") +488", 
p” =4aa' +4 (Ba'+ a8’) + 288", o” =4aa'+ 2(Ba'+a6')+ BP, 

and it is to be noted that these numbers are connected by 
the identical relation , 

p"— fu" +p" 0" =0. 
In like manner the characteristics of the system of conics 

satisfying the two conditions (a, 8), (a, 6’), and also passing 
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through two points, or through a point and touching a line, 
or touching two lines, are (u”, v’), (v", p”), (p"”, a”), and there- 
fore the number of such conics which satisfy a third condition 
a’, B" are p"a+v"8", &. Or, writing at full length, if we 
denote by yw’, v’, p’ the number of conics which satisfy three 
conditions (a, 8), (a’, 8’), (a”, 8”), and also pass through two 
points, or through a point arid touch a line, &c. we have 

bw =aa'a"” +23a0'B" + 4>a8'8" + 486'B", 

vy’ = 2aa’a" + 43008" + 43a8'B" + 2868", 

p =4aa'a"” + 43aa'B" + 23a6'B" + BR'B". 

It is evident that the characteristics of the system formed by 

adding to these three conditions a fourth, a”, B’’, are p’a’”+ v'B'", 
va" + p'B'", or, at full length, 
be —_ ad ae!” 4 2 aa' a" mr ay 4 3a0'B" "+ 45a8'B" B'"+288'B" ie 

v= 2 aa’ oo!” mi 4>aa'a” mt af 43aa'B"R'"4+ 2>a8'B"R''+ BR'B"B"”. 

And so finally, if we add a fifth condition, the number of conics 
nt satisfying all five is wa” + v8", or 

a ono” 4 230010"! B"" + 43a0'a” id oA 43aa’B"R'"" Br" 

a 2ZaB'B"B"B + BB'B"B'"B"". 

Thus this formula gives the number of conics which touch five 
given curves, by writing for a, 8, &c. the class and order 

of each curve. And in like manner we could find the number 
of curves of any order determined by the condition of touching 

given curves if we knew the number in each case where the 

conditions were only those of passing through points or touch- 
ing lines. 

414. In the preceding article, the conditions we considered 
were each independent of the others, but we may have a con- 

dition equivalent to two or more conditions, as for example, 

the condition that a conic shall touch a given curve twice 

or oftener, the condition that a curve shall osculate a curve 
or have with it contact of higher order. A condition equi- 
valent to two may be called two inseparable conditions. It 
is found that the formule obtained in the last article for in- 
dependent conditions are applicable with the necessary modi- 

fications to inseparable conditions. Thus, if we have two 
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inseparable conditions, the characteristics w", v", p”, o”, are 
the number of conics determined when we combine with the 
given two-fold condition three points, or two points and a 
line, &c., and these numbers will be always connected by the 

relation pw” — 3v"+3p"—c"=0. We proceed precisely as in 

the last article to find the number of conics determined, when 

with the two-fold condition are combined any three others. 

In this way we obtain the following formule. If m”, n”, 7”, s” 
are the characteristics of a second two-fold condition, then 

the characteristics of the system of conics determined by the 
pair of two-fold conditions are 

ge A Sao | Ae t | or 07 ” ” now 

mp" — 3 (win" + mv") + (r"w" + p"m") + Fn'v" — 3 (r'v" + n'p'), 
o's" ca 3 (o"'7" +. fp) ~f- (v"s” “4. n'a’) we Tp"r" —4 (p''n" +r"). 

And if yw’, v', p’ be the characteristics of a three-fold condition, 

the number of conics determined by the two-fold and three- 
fold condition is 
dy’ (20" a p') ats tp’ (2m” Gea vy") at sv’ {5 (w" on p') ni oe 6 (we mt o’)t. 

415. Returning to the two characteristics w, v of a series 
of curves of the m* order, satisfying one condition less than 

the number sufficient to determine each curve, we may in- 
vestigate as follows the relation between these two charac- 

teristics. Consider the points A, A’, &c., in which a curve 
of the series meets a given line; then, since w curves of the 
series pass through A, each meeting the line in m—1 other 

points, it is evident that to each point A corresponds p (m—1) 
points A’, and in like manner to each point 4’, « (m-—1) points 

A, And the number of united points of the correspond- 
ence is therefore 24(m—1). This number will be v if the 
united points can only arise when a curve of the series touches 
the line AA’, but it may happen that a curve of the series 
will be a complex containing a portion which counts twice, 
and such a curve would give rise to united points which must 
be deducted from 24(m—1) in order to give v the number 
of proper tangencies. ‘Thus, in the case of conics which we 
shall specially consider, let % be the number of conics of the 
series which reduce to two coincident right lines, and we 
have v=2u—2X. 
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416. A conic considered as a curve of the second order 
may degenerate into a pair of lines, or line-pair; in this case 
the tangential equation found by the ordinary rule becomes 
a perfect square; or, geometrically, every line through the 
common point of the line-pair is to be considered as doubly 
a tangent to the curve. Similarly, a conic considered as a 
curve of the setond class may degenerate into a pair of points, 
or point-pair; and every point of the common line of the 
point-pair may be considered as in a sense doubly belonging 
to the curve. In the latter case, the point-pair may be con- 
sidered as the limit of a conic whose tranverse axis is fixed, 

and which flattens by the gradual diminution of its conjugate 

axis, so as to tend to a terminated right line, the tangents of 
the conic becoming more nearly lines through two fixed points, 
viz. the terminating points of the line. 

Thus then, if X be the number of point-pairs in the system, 
and @ the number of line-pairs, we have 

BM=2v—a, v=Q—-A, 3U=2A4+G, 3V=2T +A. 

In Zeuthen’s researches, concerning systems of conics, the 
numbers A, @ are substituted for Chasles’ characteristics p, v, 
it being in most cases easier to ascertain the number of conics 

of a given system which reduce to line-pairs or point-pairs, 

than the number which pass through an arbitrary point or 
touch an arbitrary line. 

A. special case presents itself when the two points of a point- 

pair coincide, the line of the pair continuing to exist as a definite 
line; or, the two lines of a line-pair may coincide without 
their common point ceasing to exist as a definite point. This 
may be called a line-pair-point. 

417. In a system of conics satisfying four conditions of 
contact, it is comparatively easy to see what are the point- 
pairs and line-pairs of the system; but in order to find the 
values of \ and a, each of these pairs has to be counted, not 

once, but a proper number of times, and it is in the deter- 
mination of these multiplicities that the difficulty of the problem 
consists. For this purpose Zeuthen uses the following con- 

siderations: Take the elementary system of a conic determined 
CCC 
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by four points, then evidently the number of line-pairs is 
three, and of point-pairs is 0, but since »=1, v=2, we have 
X%=0, w=33 whence it is inferred that a pair of lines 

joining, two by two, four given points counts once among the 

number of line-pairs. But take a system ‘of conics determined 

by three points and a tangent, here we may have three line- 

pairs, viz. the line joining any two of the points, and the 
line joining to the third point the intersection of the fixed 

tangent with the line joining the first two points. There 

are in this case no point-pairs. We have also p=2, v=4, 
hence X=0, a =6; and it is inferred that a line-pair counts 

for two if it consists of the line joining two given points, 

together with the line joining to a third given point the in- 
tersection of the first line with a given line. 

Lastly, take the system of conics determined by two points 
and two tangents, and there can be but a single line-pair, viz. 
the pair joining the two points to the intersection of the two 

tangents; but since in this case w=4, v=4, X=a=—4, it is 

inferred that a line-pair counts for four if it joins to two 

given points the intersection of two given lines. It is needless 

to dwell on the reciprocal singularities. 
The movement of a conic which touches a given curve may 

be considered either a rotation round the point of contact or a 
slipping along the tangent at that point; and hence it is in- 

ferred in the case of a conic determined by touching four 

given curves, that we are to count among the line-pairs, once, 
(A’) a pair consisting of two lines, each being a common 
tangent to the curves; that we count twice, (5’) a pair con- 
sisting of a common tangent to two curves, and a tangent 

drawn to a third curve from a point where this common tangent 
meets the fourth curve, and that we count four times, (C’) a 

pair consisting of tangents drawn to two curves from the in- 

tersection of othertwo. Reciprocally, we count among the point- 
pairs once (A) a line each of whose determinations is the inter- 

section of two curves, twice (2) a tangent to a curve terminated 
by another curve, and by the intersection of two other curves; 
and four times (C) a double tangent to two curves terminated 
on two other curves. In these cases for the intersection of 
two curves, may be substituted the intersection of a curve with 
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itself or a node, and for a common tangent to two curves 
may be substituted a double tangent to a single curve. 

418. Thus, for example, to find the number of line-pairs in 

the system of conics which touch four given curves. We have 

nn'n'’n” line-pairs consisting of one of the nn’ common tangents 
to the first two, combined with one of the nn” common 
tangents to the other two; and, since we can in three ways 
form two pairs out of the four curves, the number JA’ is 3nn’n’n’”, 

Again, there are nn’n”m’” pairs consisting of a common tangent 
to the first two curves, and a tangent to the third from one 

of the points where it meets the fourth; and, since we get 
the same number if we take a common tangent to the second 
and third, or to the first and third, we have B’=32nn’n’m’”’, 

be OP 4 OOLL fs 

Lastly, there are plainly Snn’m’m” pairs of tangents of the 
kind C’. We have therefore 

a = 8nn'n’n’” + 6Snn'n'’m” + 43nn'm’m”, 

and, in ike manner, 

N=43Enn'm"’m” + 6Snm'm’ im” + 38mm’ mn”, 

and from these numbers are deduced the same values for mw, 

and vy, as we have found already. | 

419. We proceed in the same way if the conditions of the 
problem are, that the conic shall touch the same curve more 

than once, or shall have with it contact of higher order. Prof. 
Cayley uses the following convenient notation. Let (1) denote 
single contact, (1, 1) single contact with the same curve in 

two places, (2) contact of the second order or 3-point contact, 

and so on. Thus the system we have considered of conics 
having single contact with four curves is denoted by (1), (1), 

(1), (1). Let us now consider the system (1, 1), (1), (1), that 
is to say, when the conics have double contact with a single 

curve and touch two others. Then it is seen, precisely as 
before, that A’ =tn'n”+nn’.nn”. We have also 

Bat (n’m” + nm’) + nn’ (m—2) n” + nn” (m — 2) nr 

SOs + nn'm” (n—1) + nnn’ (n—1) + n’'n'm (n—2), 
Feed og O" = 8n'n"” + mm! (n — 2) n” + mm” (n — 2) n' + mm" gn (n — 1). 
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Lastly, we must count separately (D’) the «n’n” line-pairs, 
consisting of a pair of tangents drawn from a cusp of the 
first curve to the other two. Zeuthen shews that these last 
count each for three, by writing in the formule in the first 
instance an unknown multiplier 2, and determining w by an 
examination of the elementary cases where the second and third 
curves, reduce to points or lines. Collecting then the numbers 
A’+2B’ +40’, and reducing, we find 

@a=nn" (n> + 6mn —8n—4m4+ 7446 + 38x) 

+2 (m'n” + mn’) (n? + 2mn—n -— 4m +7) + 2m'm’n (n—1), 

and there is a corresponding expression for >. From these 
we find expressions for pu, v, viz. 

p= pm’ mM + pw” (m'n!” + mn’) + p'n'n”, 

yaw mm” + Vv" (m'n!” + mn’) + ¥'n'n”, 

where a 2m (m+n—3) +7, 

bw” =v =2m(m+2n—5) +27, 

p=" =2n (2m+n—5) +26, 

v” =2n(m+n—3)+ 6. 

And these numbers denote the number of conics determined by 
the conditions of touching one curve twice, together with three 

points, two points and a tangent, a point and two tangents, and 
three tangents, respectively. 

It is unnecessary to consider separately the case (1, 1), (1, 1), 
see Art. 413, and the same principles are applicable to the cases 

(3) (1), (4). 
Referring for further details to Zeuthen’s memoir, which 

may be most conveniently consulted, Nowvelles Annales, 1866, 
and to Prof. Cayley’s memoirs, Phil. Trans., 1867, we give 
the following table, in which Prof. Cayley has summed up the 
simpler results expressed in terms of m, n, and a (see Art. 83). 

(1,1, 1) po =2m* + 2m?’n + mn’ + gn* — 2m? — 8mn — $n’ 

— 20n — 29n + a(—3m— 3n+ 13), 

v= 1m? + 2m’n + 2mn? + An? — m?— Amn —n? 

— 48m — 48n+a(—3m—3n +20), 

p = 4m? + m’n + 2mn? + 2n* — 4m? — 3mn — 2n* 

— 29m — 29n +a (~ 3m —3n + 13), 
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4 y (1,1, 1,1) w= pgm*+ Zein + mn® + dinn® + ppm! 

— 4m* — 3m’n — 2mn? — 1n° 

— Tt ant — 21mn — 32,9n* + 191m + 492n 
ee: 3 ae es 2 9 2 +a (— §m*— 8mn — $n? +48m +55n — 257) + Ba, 

v= tm + 4m'nt mn’ + 2mn* + jn*- Lm — 2m'n 
oe. _ pig PO See ey 2 3mn — n° — *2-9m* —21mn — 1,81n? + 493m 

+134n + a (— $m*— 3mn —3n"+ 55m+43n— 352 

7 gay 

(2) pe’ =a, Vv’ = 2a, p” =2a, o”’ =a; 

(2, 1) we =12m+12n+a(2m+ n—14), 

v’ = 24m + 24n + a (2m + 2n — 24), 

p =12m+12n+a( m+2n—14), 

(2, 1, 1) fo = 24m* + 36mn + 12n? — 168m — 168n 

: + a (m* + 2mn + 4n?—- 25m — 29n + 188) — 3a’, 

v =12m* + 36mn + 24n? — 168m — 1687 

+a (4m? + 2mn +n? — 29m —25n + 188) — 3a’, 

(3, 2) b= 27m + 24n — 20a + $0’, 

v = 24m + 27n — 20a + 407, 

(3) fo =—4m—3n+3a, vr =—8m—8n+ 6a, 

p =— 3m—4n+ 3a. 

(3, 1) fe = — 8m*— 12mn — 8n’+ 56m+53n + a(6m + 3n—39), 

vy =— 3m*— 12mn — 8n'+ 538m+56n + a(3m + 6n—39). 

(4) #=—10m— 8n+ 6a, v=— 8m —10n+4+ 6a. 

420. It still remains to give formule for the number of 
conics satisfying five inseparable conditions, as for example (5) 
the number of conics having contact of the fifth order with a 

given curve. These numbers are found from an examination 

of the case where a curve touched by the conics is a complex 
of two other curves.. Thus the conics having contact of the 
fifth order with a complex of two curves, are made up of the 
conics having like contact with the separate curves, and there- 
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fore the expression for (5) must be such a function of m, n,-a, 
that 

d(m+m, n+n',at+a)=h(m, n, a) + h(m’, rn’, &), 

whence (5) is plainly of the form am+n+ca. From sym- 

metry we must have a=), and knowing the number of 

sextactic conics when m=3, we determine a and c, and find 
(5) =— 15m=— 15n + 9a. 

So, in like manner, the conics (4, 1) are made up of the 
conics having this contact with each of the separate curves, 

and of the conics having the contact 4 with one curve and the 

contact 1 with the other. The number of these last conics 
is found by the formule of the last article, so that we have 
db(m+m,nt+n, at+a)—d(m, n, a)—h(m’, n’, a’) a known 
function of m,n, a. By Ae process here tndieted Prof. Cayley 

establishes the SCE 

(4, 1) = — 8m*— 20mn — 8n'+ 104 (m+n) + 6a (m+n —11), 

(3, 2) = 120(m+n)+a(—4m—4n—78) 4+ 32’, 

(3, 2, 1) =— 3m*— 10m’n — 10mn* — 3n° +192m" 

+116mn +192n*— 434m — 434n 

+ a(3m"+ 6mnn + 3n*— &9m — ®9n + 291) — 

(2, 2, 1) = 24m* + 54mn + 24n* — 468 (m+ n) 

+ a(— 8m —8n + 327) + a” (4m + dn — 12), 

(2,1, 1,1) = 62m"+30m'n+30mn'+6n'—17n (m+n)*+ 1320 (m+n) 

+a(dm'+ m'n + mn'+ An? 15 m?—26mn— 15n? » 

+ 238m + 388n — 960) + a” (— 3m — 3n + 28), 

(1, 1, 1, 1, 1) = gb5 (m+n) + pymn (m* + x’) + fmin’ (m+n) 

— xy (m* + n*) — 8mn (m* +n”) — 2m*n? 

— 449 (m+ 2) — 22Pmn (m+n) + 128 (m+ nt 
+ 583mn — 2129 (m+n)+ a(—4m*—8m'’n—3mn? 

— tn'+ 22 m+ 23mn+ %P n’—232m—222n +486) 

+a’ {2 (m+n) — 15}. 

2 

ga, 

Zeuthen and Cayley have also investigated formule for the 
cases where the conditions include contact with a curve at a 

given point; and Cayley’s memoir contains investigations of 
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a formula of De Jonquiéres, giving the number of curves of 

the order r having with a given curve of the order m, ¢ con- 
tacts of the order a, 0, c, &c., and besides passing through p 

points on the curve. But the subject is too extensive to be 
here further treated of. 

~ 

NOTE ‘BY PROFESSOR CAYLEY ON ART. 416. 

Some remarks may be added as to the analytical theory 
of the degenerate forms of curves. As regards conics, a line- 
pair can be represented in point-coordinates by an equation 

of the form xy=0; and reciprocally a point-pair can be re- 

presented in line-coordinates by an equation &7=0, but we 
have to consider how the point-pair can be represented in 

point-coordinates: an equation 2*=0 is no adequate repre- 

sentation of the point-pair, but merely represents (as a two- 

fold or twice repeated line) the line joining the two points 

of the point-pair, all traces of the points themselves being 
lost in this representation: and it is to be noticed, that the 

conic, or two-fold line a’=0, or say (aw+ By+-yz)*=0 is a 

conic which, analytically, and (in an improper sense) geome- 
trically, satisfies the condition of touching any line whatever ; 
whereas the only proper tangents of a point-pair are the lines 

which pass through one or other of the two points of the 

point-pair. , 
The solution arises out of the notion of a point-pair, con- 

sidered as the limit of a conic, or say as an indefinitely flat 
conic; we have to consider conics certain of the coefficients 

whereof are infinitesimals, and which when the infinitesimal 
coefficients actually vanish reduce themselves to two-fold lines; 

and it is, moreover, necessary to consider the evanescent co- 

efficients as infinitesimals of different orders. Thus consider 
the conics which pass through two given points, and touch two 

given lines (four conditions) ; take y=0, 2=0 for the given 

lines, x =0 for the line joining the given points, and (~7=0, 

y—az=0), (2=0, y— Bz =0) for the given points; the equation 
of a conic satisfying the required conditions and containing one 

arbitrary parameter @, is 

a” + 20ay + 26 /(a8) xz + & (y -— az) (y— Bz) =9; 
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or, what is the same thing, 

fx + By +0 (a8) 2}* - 6 (a+ A) ye=05 
and this equation, considering therein @ as an infinitesimal, say 
of the first order, represents the flat conic or point-pair composed 
of the two given points. Comparing with the general equation 

(a, 6, o,f, 9, Aka, y, 2)’ =0, 
we have 

a=1, b=, c=@aB, f=-40' (a+), g=O (a8), h=8, 

viz. a being taken to be finite, we have g and h infinitesimals 
of the first order; 0, c, f infinitesimals of the second order; and 

the four ratios /(d) : /(c): V(f):g: are so determined as to 
satisfy the prescribed conditions. 

Observe that the flat conic, considered as a conic passing 
through the two given points and touching the two given 
lines, is represented by a determinate equation, viz. consider- 
ing the condition imposed upon @ (@=infinitesimal) as a de- 
termination of 6, the equation is a completely determinate 

one; but considering the flat conic merely as a conic passing 

through the two given points, the equation would contain 

two arbitrary parameters, determinable if the flat conic was 
subjected to the condition of touching two given lines, or to 
any other two conditions. 

Generally we may consider the equation of a curve of 

the order nx; such equation containing certain infinitesimal 
coefficients, and when these vanish, reducing itself to a composite 
equation P*Q*...=0; the equation in its original form represents 

a curve which may be called the penultimate curve. Consider 

the tangents from an arbitrary point to the penultimate curve ; 
when this breaks up, the system of tangents reduces itself to 
(1) the tangents from the fixed point to the several component 

curves P=0, Q=0, &c. respectively ; (2) the lines through 

the singular points of these same curves respectively; (3) the 
lines through the points of intersection P=0, Q=0, &c. of each 

two of the component curves; these points, each reckoned a 
proper number of times, are called “ fixed summits;” (4) the 
lines from the fixed point to certain determinate points 
called “free summits” on the several component curves P=0, 

Q=0, &c. respectively. We have thus a degenerate form 
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of the n-thic curve, which may be regarded as consisting of 
the component curves, each its proper number of times, and 

of the foregoing points called summits, and is consequently 
only inadequately represented by the ultimate equation 
P*Q%...=0; the number and distribution of the summits 
is not arbitrary, but is regulated by laws arising from the 

consideration of the penultimate curve, and there are of 
course for any given value of m various forms of degenerate 
curve, according to the different ultimate forms P*Q?...=0, 
and to the number and distribution of the summits on the 
different component curves. ‘The case of a quartic curve 
having the ultimate form 2’y?=0 has been considered by 
Cayley, Comptes Rendus, t. LXXIV., p. 708 (March, 1872), 
who states his conclusion as follows: “there exists a quartic 

curve the penultimate of z*y’=0, with nine free summits, three 
of them on one of the lines (say the line y=0), and which are 

three of the intersections of the quartic by this line (the fourth 
intersection being indefinitely near to the point z=0, y=0), 
six situate at pleasure on the other line 2=0; and three fixed 
summits at the intersection of the two lines.”. Other forms 

have been considered by Dr. Zeuthen, Comptes Rendus, t. LXXV. 
pp. 703 and 950 (September and October, 1872), and some 
other forms by Zeuthen; the whole question of the degenerate 
forms of curves is one well deserving further investigation. 

The question of the number of cubic curves satisfying given 
elementary conditions (depending as it does on the consideration 
of the degenerate forms of these curves) has been solved by 
Maillard and Zeuthen; that of the number of quartic curves 

has been solved by Dr. Zeuthen. 
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NOTES. 

Art, 58, p. 48. On the equivalence of higher singularitier of curves to ordinary 

singularities, see Professor H. J. 8S, Smith, “On the higher singularities of plane 

curves, Proceedings London Math. Soc, V1. 153; Zeuthen, Math, Ann., x, 212, 

Art, 151, p. 132. In connection with this theory see Cremona (Nouvelles Annales, 

1864, p. 23); also Schroter “on a mode of generating cubics”; Math, Ann, v. 50, 

Durége “on a cubic considered as the locus of the foci of a system of conics,” 

Math, Ann, v. 83; and Clebsch “on two methods of generating cubics,” Math, Ann. 

v. 422. Grassmann (Credle, LI1. 254) has generated a cubic as the locus of a point 

such that the lines joining it to three fixed points meet three fixed lines in points 

which lie on a right line. 

Art. 161, p. 139, Investigations of a nature kindred to those of Sylvester on 

residuation were made about the same time by Brill and Noether, G@ttinger 

Nachr., 1873, p. 116, An abstract is given by Fiedler in the notes to his translation 

of this work, 

p. 185. Add to the note “See also a dissertation by Rosenow Breslau, 1873,” 

Art. 220, p. 191, The form in which S is written by Aronhold is as follows : 

— S= (b,c, — m*)? + (cya — a5”) (cq — 55”) + (ab, — a7) (b3¢ — ¢,”) 

+ (ga, — ma) (be — b,cz) + (agm — ab,) (b,c, + cb, — 2c,m) 

+ (maz — G,C,) (b,c + cb — 2mbs), 

p. 212. Add to the note, “In the paper last mentioned Gundelfinger writes down 

the 34 forms which constitute the system of concomitants to a ternary cubic, in 

conformity with Gordan’s theory, Math. Ann.1. 90. See also Gundelfinger’s paper 

Math. Ann., Vit. 186, On the subject of cubic curves Clebsch ought also to be 

consulted, Vorlesungen iiber Geometrie, p, 497.” 

ON THE BITANGENTS OF A QUARTIO, BY PROFESSOR CAYLEY, 

THE equations of the 28 bitangents of a quartic curve were obtained in a very 

elegant form by Riemann in the paper “ Zur Theorie der Abelschen Functionen fiir 

den Fall p = 3,” Werke, Leipzig, 1876, pp. 456—472; and see also Weber’s “Theorie 

der Abelschen Functionen vom Geschlecht 3,” Berlin, 1876. Riemann connects the 

several bitangents with the characteristics of the 28 odd functions, thus obtaining for 

them an algorithm which it is worth while to explain, but they will be given also 

with the algorithm employed p, 231 e¢ seg. of the present work, which is in fact the 

more simple one, The characteristic of a triple @-function is a symbol of the form 

apy, 

a’ B’y’; 

where each of the letters is = 0 or 1; there are thus in all 64 such symbols, but they 

are considered as odd or even according as the sum aa’ + 6’ + yy’ is odd or even; 
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and the numbers of the odd and even characteristics are 28 and 36 respectively ; and, 

as already mentioned, the 28 odd characteristics correspond to the 28 bitangents + 

respectively. 

We have «x, y, 2 trilinear coordinates, a, B, y, a’, 6’, y’ constants chosen at 
pleasure, and then a’, 8”, y” determinate constants, such that the equations 

Zt yt 2+ FE+ n+ 9 =9, 

By #8. SOP Rees gg 

a'ntBytye+ 5444S <0 Bry 3 a B Y 9 

” ? ” = n Pe 
PERT ET DS Oa at inti 

are equivalent to three independent equations; this being so, they determine &, n, ¢ 

each of them as a linear function of (2, y, z); and the equations of the bitangentg 

of the curve J(x€) + J(yn) + J(2%) = 0 (see Weber, p. 100) are 

18 

28 

38 

23 

13 

12 

48 

14 

58 

15 

68 

16 

78 

17 

24 

34 

111 
lll 

001 
Oll 

011 
001 

010 
010 

100 
110 

110 
100 

101 
100 

010 
O11 

100 
101 

011 
010 

110 
010 

001 
101 

010 
110 

101 
001 

100 
111 

110 
101 

#0, 

cty+tz=0, 

E+y+2=0, 

ax + By + yz=0, 

E 
= + fy+yz=0, 
a 

a'x + ply + y'2=0, 

e ’ yee 
a + py t+ y’z=9, 

ae + By + yz = 0, 

i 3 ” $s ci, 
a” + B’y + yz = 90, 

ct+tnt+z=9, 

ery+ = 0, 
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25 + ax + 3 +yz=0, 

35 06 ax+ py + & =0, 

vai 001 a’a + z + y'2=0, 

- ou ae t py + = = 0, 

27 | ig | a’e+ By + "2 =0, 

ee ss 
Mo a) Gee tic ye titers” 

- ae 
45 | OL co ity. sarees Ser =0, 

110 a’ (1 em ‘) B’ (1 ry'a’) = y (l § ap’) =0, 

The whole number of ways in which the equation of the curve can be expressed 

in a form such as J(x£&) + J(yn) + (zg) = 0 is 1260; viz. the three pairs of bitangents 

entering into the equation of the curve are of one of the types 

12.34, 13.24, 14.23 By Nois 70 

12.34, 13.24, 56.78 (1 I] » 680 

13,23, 14.24, 15.25 & 9 | 560 

1260 

and it may be remarked that selecting at pleasure any two pairs out of a system 

of three pairs the type is always O or |||, viz. (see p. 233) the four vena are 

such that their points of contact are situate on a conic. 

Art, 269, p. 241. In saying that the case of quartics with a single node had 

received no attention I overlooked Brioschi’s paper, Math, Ann, Iv. 95, followed by 

Cremona, p. 99, and Brill, Math. Ann. vi. 66 and Crelle, vol. 65. 

Art. 276, p. 246. The method here employed had been indicated by Burnside, 

Educational Times reprint Vit. 70. 

Art, 287, p. 257. On this subject see a paper by Mr, Malet, Trans. Royal Irish 

Academy, XXV1, 431 (1878). 
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Aberrancy of curvature, 97, 368, 
Absolute invariant of a cubic, 144, 165, 
Acnode, 25, 129. 

of cubic constructed when stationary 
tangents are given, 184. 

Angle made by tangents with axis, 36. 
with radius vector, 80. 
sum of, given which tangents from a 

point make with fixed line, 123. 
between focal radii and tangent, 125. 

Angle at which curves cut, unaltered by 
certain transformations, 314. 

Anharmonic, theorems of conics, their 
analogues in cubics, 140. 

ratio constant of pencil of tangents 
from point on cubic, 144. 

this ratio expressed in terms of fun- 
damental invariants, 199. 

ratio unaltered by linear transforma- 
tion, 296. 

ratios equal of tangents from two nodes 
of quartic, 241. 

Antipoints, 122, 
Arc of evolute, length of, 88. 
Archimedes, spiral of, 291. 
Aronhold’s invariants of cubics, 191. 
<r of bitangents of quartics, 

Asymptotes, their equation how found, 40, 
how cut by any transversal, 113. 
of cubic, 170. 

Atkins on caustics, 101. 

Bernoulli, on lemniscate, catenary and 
logarithmic spiral, 44, 289, 293. 

Bertini on rational transformation, 326. 
Bicircular quartics, 126, 142, 241, 
Bifid substitution, 232, 
Biflecnodes, 217. 
Bipartite cubics, 168, 
Bitangents, general theory of, 342, &c. 

of quartics, 111, 220, 223. 
eae Ts curve, of quartic, 223, 349, 

Brill, on transformation of curves, 329. 
on residuation, 387, 389. 

Brioschi, on nodal quartics, 389. 
Canonical form, of equation of cubic, 

188, 196. 
general equation of cubic how reduced 

to, 198, 

Cardioide, 44, 252, 282. 
Carnot, theorem of transversals, 109. 
Cartesians, 101, 104, 126, 241, 244, 250, 
Cartesian coordinates, how related to 

trilinear, 6. 
Casey, on bicircular quartics, 241. 
Cassini’s ovals, 44, 126, 
Catenary, 287. 
Caustics, 98, &c. 

of parabola, 107. 
Cayley on intersections of two curves, 

on equivalence of higher singularities 
to a union of simpler, 48. 

modification of Pliicker’s equations, 
66. 

on envelope of equation containing 
independent parameters, 74. 

on quasi-evolutes, 92. 
on acne of parallel curves, 

102. 
on problem of negative pedals, 107. 
on foci, 120. 
on involution, and classification of 

cubics, 162, 179. 
his notation for equation of cubic, 

189 
algorithm for bitangents of quartics, 

230, 232. 
on tangents from nodes of binodal 

quartic, 241. 
on cartesians, 251, 
on logarithmic curve, 287, 
on skew reciprocals, 304. 
on transformation of curves, 316, 
solution of problem of bitangents, © 

341, 351, 355. 
on sextactie points, 371. 
on systems of curves, 372, 379. 
on degenerate forms of curves, 383. 
note on bitangents of quartic, 387. 

Cayleyan of cubic, different definitions of, 
151 

its equation, 190. 
in point coordinates, 203, 
of a system of conics, 225, 
of a curve in general, 364, 

Centres, 115. 
Central cubics, 164. 
Centre of mean distances, 112. 

of contacts of parallel tangents, 119. 

» 
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Characteristics of reciprocal, 65. 
of evolute, 94. 
of parallel, 102. 
of inverse curve and pedals, 106. 
of system of conics, 372. 

Chasles on contact of parallel tangents, 119. 
on projection of cubics into cen 

cubics, 164, 
on Cartesians, 241, 250. 
on systems of curves, 372. 

Circular points at infinity, 1, 83, 90, 119,124, 
their coordinates, 7. 
normal at, 94. 
circular cubic, 126, 142, 248. 

Circular coordinates, 7. 
Cissoid, 84, 182. 
Class of a curve how connected with its 

order, 54. 
Clebsch, on unicursal cubics, 188. 

on canonical form of a quartic, 265. 
on Jacobians, 359. 
on generation of cubics, 387, 
on symbolical notation, 343. 

Clifford, on Miquel’s theorem, 128, 
Conchoid of Nicomedes, 44. 
Condition that curve should have a double 

point, 55. 
a cusp, 58. 
a point of undulation, 362. 
that two curves should touch, 80. 
that four consecutive ‘points on curve 

should lie in a circle, 97. 
that cubic should be sum of three 

cubes, 197. 
should represent three lines, 197, 
a conic and a line, 210. 
that quartic should be sum of five 

fourth powers, 265. 
Contact of conics with cubics, 135, 207. 

with curves in general, 368. 
Contravariants of cubic, 190, 204, 

of quartic, 264, 271, 273, 
Coresiduals, 134. 
Oe of two points on a cubic, 

132. 
on Hessian, 149. 
general theory of, 255, 324, 331. 

Cotes, theorem of harmonic means, 115. 
Covariants of cubics, 189, 200. 

of quartics, 264, 269, 273. 
Cramer on intersections of two curves, 22. 

_on points of visible inflexion, 37, 
on tracing of curves, 43. 

Cremona, on Cayleyans, 151. 
on transformation of curves, 316, 
on nodal quartics, 3. 

Critic centres of system of cubics, 160, 
’ 

of cubic and Hessian, 200. 
Crunodes, 24, 129. 
Curvature, centre and radius of, 84, 86. 

of roulettes, 284 
aberrancy of, 368. 

Cusps, 25, 48, 58. 
curvature at, 87. 

Cuspidal cubics, 180, 
Cycioid, 275... 
Dandelin on caustics, 99. 

INDEX. 

Deficiency of a curve defined, 30. 
same for curve and its reciprocal, 66. 
or for any curve connected with it by 

linear correspondence, 97. 
unaltered by Cremona transforma- 

tion, 321. 
or any rational transformation,326,331. 

Degenerate forms of curves, 377, 383. 
De Jonquiéres on systems of curves,372,383. 
De Morgan on Newton’s process for finding 

figure of curve at multiple point, 46. 
Des aero (see Cartesians), on the cycloid, 

278 
on the logarithmic spiral, 293, 

Descriptive properties, 1, 82. 
Diameters, 112. 
Diocles, the cissoid, 182. 
Discriminant of a curve defined, 55. 

of a cubic expressed in terms of 
fundamental invariants, 159, 196, 
199, 210. 

expressed as a determinant, 211. 
of discriminant, 360. 

Divergent parabolas, 164, 166, 173, 176. 
Double points, their species, 24. 

equivalent to how many conditions, 28, 
limit to their number, 28. 

Duality, geometrical, 12. 
Durege, on cubic considered as locus of 

foci, 387. 

Envelopes, general theory of, 67. 
of line whose equation is algebraic 

function of parameter, 70. 
of line whose intercept between two 

lines is constant, 102, (see also 69, 
84), 283. 

of line joining feet of perpendiculars 
from point on circle on sides of 
inscribed triangle, 283, 

of line joining corresponding points 
on cubic, 133, 

Equitangential curve, 290. 
Epicycloids, 278. 
Euler, on intersections of two curves, 22. 

on epicycloids, 279. 
on logarithmic curve, 286. 

Evectants of invariants S and 7,191, 194. 
Evolutes of conics, 41, 83. 

of curves generally, 82. 
tangential equation of, 89. 
characteristics of, 94. 
confocal with curve, 124, 

Flecnodes, 217. 
Foci, general theory of, 119. 

locus of foci under certain couditions, 
127. 

of circular cubic lie on circles, 248. 
of bicircular quartic, 242. 

Galileo, on the cycloid, 277. 
on the catenary, 289. 

Geiser, on bitangents of quartics, 231. 
Gergonne, on intersections of two curves, 

22 
Gordan, on number of concomitants to a 

cubic, 387, 
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Grassman, on generation of cubics, 387, 
Gregory, on tracing of curves, 43, 

on logarithmic curve, 287. 
Groups, of cubics, Pliicker’s, 178. 
Guldenfinger, on concomitants of cubics, 

Haase, on unicursal cubics, 185. 
Harmonic mean of radii, 115. 

pencil by chords of cubic, 133. 
polar of point of inflexion of cubic, 

146,203. 
Hart, construction for ninth point common 

to all cubics passing through eight, 
140. 

theorem that foci of a circular cubic 
lie on circles, 145. 

proof of Hesse’s theorem on inflexions 
of cubics, 148. 

on foci of bicircular quartic, 242. 
theorem that confocals cut at right 

angles, 248. 
on logarithmic curve, 287. 

Hesse, his theorem that inflexions of cubic 
are also inflexions of Hessian, 148. 

algorithm for bitangents of a quartic, 
230, 234. ; 

reduction of bitangential of quartic, 
344 

Hessian, defined, 57. 
passes through points of inflexion, 

5] e 

of cubic, its equation, 190. 
of quartic, 223, 
of Hessian of cubic, 196. 
of UV, 212. 

Homographic, tangents from nodes of a 
binodal quartic are, 241, 

transformation, 295. 
Huyghens, on evolutes, 88, 

on the cycloid, 278. 
Hyperbolas, cubical, 170, &c. 
Hyperbolism of any curve, 178, 
Hyperelliptic integrals, 330. 

Identical equation for cubic, 205. 
Tgel, on unicursal cubics, 185. 
Independent parameters, envelope with, 74, 
Infinity, pole of, 117, 

normal at, 94. 
satellite of, 151. 
polar conic of, with respect to cubic, 

158. 
Inflexion, points of, 33. 

tangent at it double, 34. 
curve there crosses tangent, 35. 
number of, 59, 
three inflexions of cubics lie on a 

right line, 110, 131. 
inverse of this theorem, 312. 
real for acnodal cubics, imaginary 

for crunodal, 184. 
of quartics, how many real, 221. 

Inflexional tangents of cubic touch Hes- 
sian, 152. 

equation of system of, 203. 
Ingram, on inversion, 312. 
Interscendental curves, 275. 
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Intersections of curves, 16, 
Inversion, 106. 

characteristics of inverse curves, 106, 
of parabola, 183. 
my! to obtain focal properties, 

in wider sense of word, 254. 
a case of quadric transformation, 310. 
applications of the method, 311, 

Involute of circle, 290. 

Jacobi, on intersection of two curves, 22, 
Jacobian of three curves, 150. 

of a system of conics, 225. 
common point of three curves of same 

degree is double point on, 160, 358. 
properties of, 357. 

Joachimsthal, his method of determining 
point where line meets curve, 49. 

Jungius, on catenary, 289. 

Keratoid cusps, 48. 
Kirkman, on Pascal’s hexagon, 19, 

Leibnitz, on interscendental curves, 275. 
Lemniscate, 44. 
Limagon, 44, 99, 252, 282, 
Line coordinates, 9 
Linear transformation, 295. 
Lituus, 292. 
Locus, of common vertex of two triangles, 

whose bases are given, and vertical 
angles have given difference, 142. 

of point whence tangents to a curve 
have given invariant relation, 79. 

whence tangents make with fixed 
line angles whose sum is given, 
123. 

of nodes of all nodal cubics through 
seven fixed points, 160. 

Logarithmic curve, 286, 
spiral, 292. 

Liiroth, on special class of quartics, 265. 

Mac Laurin’s, general theorem on curves, 
117 

theory of correspondence of points on 
a cubic, 133, 

on harmonic polars of inflexions of 
cubic, 146. 

Magnus, on reduction of homographic 
transformation to projection, 299. 

Maillard, on number of cubics satisfying 
elementary conditions, 385. 

Mersenne, on cycloid, 277. 
Metrical theorems defined, 1, 108, 
Miquel’s theorem, 128. 
Multiple points, equivalent to how many 

nodes, 28. 
how related to polar curves, 52. 
how affect points of inflexion, 60. 
number of tangents from, 63. 

Multiple tangents, 32, 52. 

Newton’s process for finding figure of 
curve at multiple point, 46. 

theorem of ratio of rectangles, 108. 
on diameters, 112, * 

EEE 



394 

Newton, on intercept between curve and 
asymptotes, 113. 

theorem that a cubic may be projected 
into one of the five parabolas, 164. 

classification of cubics, 176. 
description of cissoid by continuous 

motion, 183, 
Newton’s rectification of epicycloids, 284. 

_ Nicomedes, conchoid of, 44 
Node cusps, 214. 
Normal, 89. . 

of point at infinity, 94. 
rae of terms in general equation, 

1 
of conditions which determine a 

curve, 15. 
of tangents to a curve from a given 

point, 54, 
of conics which touch five given 

curves, 375. 
satisfying any five conditions of con- 

tact, 382, 

Oscnodes, 216. 
Osculating conics, 368, &c, 
Oval, no real tangents can be drawn to 

cubic from, 167. 
@ quartic may have four, 219. 

Parabola, cubical and semicubical, 83, 176. 
divergent of the third degree, 164. 

Parallel curve to a conic, equation of, 70. 
tangential equation of, 103. 
characteristics in general, 102. 

Parallel tangents, have fixed point as 
centre of mean distance of their 
contacts, 119. 

Parametric expression of point on unicursal 
cubic, 185. 

on cubic in general, 329, 338. 
on unicursal quartic, 260, 
on nodal quartic, 330. 

Partitivity of cubics, 168, 
of quartics, 219. 
limit in general, 220. 

Pascal, theorem of one derived from 
‘theory of cubics, 1 

limagon, 44, 99. 
on cycloid, 278, 

Pedal, of a curve, 99, a 
negative, 105, 106 

Perpendicularity, extension of relation, 

Pippian of cubic, 151. 
Pliicker, on intersection of curves, 22. 

on degree of reciprocal, 54. 
his equations connecting reciprocal 

singularities, 65. 
on theorem of transversals, 110, 
on foci, 119. 
classification of cubics, 161, 178. 
on forms of quartics, 219. 
on bitangents of quartics, 227. 

Poles and polars, 
general theory of, 49, 115, 357, &c. 
in case of cubics, 142. 
polar of point with regard to triangle, 
“oe 

INDEX. 

Poles and polars, 
of infinity with regard to a curve of 

the n™ class, 119. 
first polar contains points of conn 

of tangents, 53. 
polar conic of line with regard to 

cubic, 156. 
Polar coordinates, problems discussed in, 

23, 79, 88, 108, 112, 116. 
Polygons, problem of inscription of, in 

conics, 253, 337 
in cubics, 181, 338, 
in quartics, 253. 

Poncelet, on number of tangents to a 
curve from any point, 54. 

on vale Aad of polygons in curves, 
253, 339 

Projection, of cubics, 164, 169. 
a homographic transformation, 298, 

Pursuit, curves of, 290. 

Quadrangle formed by contacts of tangents 
from point on cubic, 132, 206. 

Quasi evolutes and quasi normals, 90, 182. 
Quetelet, on caustics, 99. 

Ramphoid cusps, 48, 214. 
Rational expression for coordinates of 

point on unicursal curve, 30, 185, 260. 
transformation, 308. 

Reciprocal of a curve, its degree, 54, 
characteristics of, 65. 
method of finding equation of, 67, 76. 
of a cubic, 76, 158, 193. 
of a quartic, 78, 223. 
in polar coordinates, 79. 
skew reciprocals, 506. 

Residuation, Sylvester’s theory of, (134, 
for cuspidal cubics, 180. 

Riemann, on constancy of ietrlenee, 326, 
on bitangents to a quartic, 387. 

Roberts, on problem of parallels and 
negative pedals, 105, 

on transformation of curves, 313. 
Roberval, on the cycloid, 278, 
Roemer, on epicycloids, 284. 
Roulettes, 284, 

Satellite of a line with respect to a cubic, 
> 

of line infinity, 131, 
envelope of, 162, 
used in classification, 161, 178, 

Schroter, on generation of cubics, 387. 
Sextactic points on cubics, 135, 

on curves in general, 371. 
Signs of coordinates, how determined, 3. 
Singularities, higher equivalent to a union 

of simpler, 49. 
which to be counted ordinar, y, 64, 

Sinusoid, 285. 
Skew reciprocals, 306. 
Smith, on singularities of Curves, 587. 
Spinodesg, 25. 
Spirals, 291. 
Stationary points, 25, 

tangents, 33. 
of cubic touch Hessian, 153, 
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Stationary tengeneu ofsystem,203, 
Steiner, on hexagon, 19 

on inscription of polygons in quartics, 
253. 

on bitangents of quartics, 234. 
on curve enveloping line joining feet 

of three perpendiculars, 283. 
on circles osculating conic and passing 

through given point, 312, 
on systems of curves, 360, 

Steinerian defined, 57. 
identical with Hessian in case of 

cubic, 150. 
its properties, 363, 

Steiner-Hessian, 364, 
Stubbs, on inversion, 312. 
Sylvester’s theory of residuation, 134, — 
se pe i, form of equation of reciprocal, 

of locus of points, whence tangents 
satisfy invariant relation, 79, 

‘Systems of curves, 372, 
Syntractrix, 289, 

Tacnode, 214, 
cusp, 214, 

Tact-invariant of two curves, 80, 360, 
Tangent, at origin, equation of, 23. 

from any point, points of contact, 
how determined, 53. 

how specially related in case of cubic, 
i. 182, 
equation of system, 61, 78. 
from a multiple point, 63. 
locus of point if sum of angles made 

with by a fixed line be constant, 123, 
if tangents fulfil invariant relation, 79. 

Tangential coordinates, 9. 
particular cases of, 10. 
equation of ev olutes, 89. 
of a point with respect to a cubic, 

130, 180, 206. 
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Tangential, 
its coordinates, how found, 156, 
points of a curve, how related, 38, 
curve, mode of finding its equation, 

352. 
Tracing of curves, 40. 
Tractrix, 289. 
Transformation of curves, 294, 
Transon, aberrancy of curvature, 368, 
Tricuspidal quartics, 258, 
Trident, 176. 
Trinodal quartic, properties of, 254. 

' tangents at or from nodes touch conic, 
256. 

Triple points, their species, 27. 
Tschirnhausen on caustics, 98, 
Twinpair sheet of cones, 165, 

Undulation, point of, 37. 
in case of quartics, 218. 
general condition for, 362. 

Unicursal curve, defined, 31, 69, 107. 
cubics, 168, 179, 
quartics, 254, 
correspondence of points on, 332. 

Unipartite cubics, 168, 
United points of correspondence, 332. 

Vincent, on logarithmic curve, 286. 

Walker on invariants of quartics, 274. 
Waring on number of tangents to a curve 

from any point, 54, 
Wallace on catenary, 288, 
Weber, on Abelian functions, 387, 
Wren on cycloid, 278. 

Zeuthen, proof that deficiency is unaltered 
by rational transformation, 326, 

on bitangents to a quartic, 220, 
on systems of curves, 377, 385. 
on singularities of curves, 387. 

THE END. 
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